Publications

* Equal contribution with alphabetical order

† Co-corresponding

Preprints Published
  • Gaussian mixture reduction with composite transportation divergence
    Qiong Zhang, Archer Gong Zhang, Jiahua Chen
    IEEE Transactions on Information Theory, 2023
    journal  arXiv  code  slides  BibTeX

    @article{zhang2024gaussian,
      title={Gaussian Mixture Reduction With Composite Transportation Divergence},
      author={Zhang, Qiong and Zhang, Archer Gong and Chen, Jiahua},
      journal = {IEEE Transactions on Information Theory},
      year={2024},
      volume={70},
      number= {7},
      page= {5191-5212},
      doi={10.1109/TIT.2023.3323346},
    }

  • Distributed learning of finite Gaussian mixtures
    Qiong Zhang, Jiahua Chen
    Journal of Machine Learning Research, 2022
    journal  arXiv  code  talk  slides  poster  BibTeX

    @zhang2024gaussian{zhang2022distributed,
      title={Distributed Learning of Finite Gaussian Mixtures},
      author={Zhang, Qiong and Chen, Jiahua},
      journal = {Journal of Machine Learning Research},
      year={2022},
      volume={23},
      number= {1},
      page= {4265--4304},
      url= {http://jmlr.org/papers/v23/21-0093.html},
      publisher={JMLRORG}
    }

  • Minimum Wasserstein distance estimator under finite location-scale mixtures
    Qiong Zhang, Jiahua Chen
    Springer. Advances and Innovations in Statistics and Data Science, 2022
    chapter  arXiv  BibTeX

    @incollection{zhang2022minimum,
      title={Minimum Wasserstein distance estimator under finite location-scale mixtures},
      author={Zhang, Qiong and Chen, Jiahua},
      booktitle={Advances and Innovations in Statistics and Data Science},
      pages={69--98},
      year={2022},
      publisher={Springer}}

  • Robustness of Gaussian mixture reduction for split-and-conquer learning of finite Gaussian mixtures
    Qiong Zhang, Jiahua Chen
    3rd International Conference on Statistics: Theory and Applications (ICSTA), 2021
    proceedings  talk  BibTeX

    @inproceedings{zhang2021robustness,
      title={Robustness of Gaussian Mixture Reduction for Split-and-Conquer Learning of Finite Gaussian Mixtures},
      author={Zhang, Qiong and Chen, Jiahua},
      booktitle={Proceedings of the 3rd International Conference on Statistics: Theory and Applications (ICSTA'21)},
      year={2021} }

  • Boosting the generalization capability in cross-domain few-shot learning via noise-enhanced supervised autoencoder
    Hanwen Liang*, Qiong Zhang*, Peng Dai, Juwei Lu
    International Conference on Computer Vision (ICCV), 2021
    proceedings  arXiv  poster  BibTeX

    @inproceedings{liang2021boosting,
      title={Boosting the Generalization Capability in Cross-Domain Few-shot Learning via Noise-enhanced Supervised Autoencoder},
      author={Liang, Hanwen and Zhang, Qiong and Dai, Peng and Lu, Juwei},
      booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
      pages={9424--9434},
      year={2021}}

  • Classification beats regression: counting of cells from greyscale microscopic images based on annotation-free training samples
    Xin Ding*, Qiong Zhang*, William J. Welch
    CAAI International Conference on Artificial Intelligence (CICAI), 2021
    proceedings  arXiv  code  poster  BibTeX

    @inproceedings{ding2021classification,
      title={Classification Beats Regression: Counting of Cells from Greyscale Microscopic Images Based on Annotation-Free Training Samples},
      author={Ding, Xin and Zhang, Qiong and Welch, William J},
      booktitle={CAAI International Conference on Artificial Intelligence},
      pages={662--673},
      year={2021},
      organization={Springer} }

  • Small area quantile estimation via spline regression and empirical likelihood
    Zhanshou Chen, Jiahua Chen, Qiong Zhang
    Survey Methodology, 2019
    journal  BibTeX

    @article{chen2019small,
      title={Small area quantile estimation via spline regression and empirical likelihood},
      author={Chen, Zhanshou and Chen, Jiahua and Zhang, Qiong},
      journal={Survey Methodology 45-1},
      volume={45},
      number={1},
      pages={81--99},
      year={2019}}

  • Highlighting discrepancies in walking prediction accuracy for patients with traumatic spinal cord injury: an evaluation of validated prediction models using a Canadian multicenter spinal cord injury registry
    Philippe Phan, Brandon Budhram, Qiong Zhang, Carly S. Rivers, Vanessa K. Noonan, Tova Plashkes, Eugene K. Wai, Jérôme Paquet, Darren M. Roffey, Eve Tsai, Nader Fallah
    The Spine Journal, 2019
    journal  BibTeX

    @article{phan2019highlighting,
      title={Highlighting discrepancies in walking prediction accuracy for patients with traumatic spinal cord injury: an evaluation of validated prediction models using a {C}anadian multicenter spinal cord injury registry},
      author={Phan, Philippe and Budhram, Brandon and Zhang, Qiong and Rivers, Carly S and Noonan, Vanessa K and Plashkes, Tova and Wai, Eugene K and Paquet, J{\'e}r{\^o}me and Roffey, Darren M and Tsai, Eve and others},
      journal={The Spine Journal},
      volume={19},
      number={4},
      pages={703--710},
      year={2019},
      publisher={Elsevier}}

  • Generating handwritten Chinese characters using CycleGAN
    Bo Chang*, Qiong Zhang*, Shenyi Pan, Lili Meng
    Winter Conference on Applications of Computer Vision (WACV), 2018
    proceedings  arXiv  code  talk  BibTeX

    @inproceedings{chang2018generating,
      title={Generating handwritten chinese characters using cyclegan},
      author={Chang, Bo and Zhang, Qiong and Pan, Shenyi and Meng, Lili},
      booktitle={2018 IEEE Winter Conference on Applications of Computer Vision (WACV)},
      pages={199--207},
      year={2018},
      organization={IEEE}}

Dissertation
  • Small area quantile estimation under unit-level models
    Master Thesis, University of British Columbia, Vancouver (2017)
    UBC library  BibTeX

    @masterthesis{zhang2017small,
      title={Small area quantile estimation under unit-level models},
      author={Zhang, Qiong},
      year={2017},
      school={University of British Columbia}
    }

  • Inference under finite mixture models: distributed learning and approximate inference
    Doctoral Thesis, University of British Columbia, Vancouver (2022)
    UBC library  BibTeX

    @phdthesis{zhang2022inference,
      title={Inference under Finite Mixture Models : Distributed Learning and Approximate Inference},
      author={Zhang, Qiong},
      year={2022},
      school={University of British Columbia},
      type= {{PhD} dissertation},
    }