
Distributed Learning of Finite Gaussian Mixtures

Background

The composite transportation divergence between two mixtures  

and  is 

 

The proposed aggregated estimator GMR is 
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Proposed Aggregation Method
Overview of the method

Challenges of aggregation under finite Gaussian mixtures

• When the parameter space is Euclidean, aggregate via linear average 

 

where  is the # of local machines and  is the local estimate on the th machine 
• Under mixture model 

• The simple average  is NOT in the parameter space 

• From mixture point of view:  is a good estimate for  

• We could find an approximation to  from the desired parameter space
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Local Central

Figure 1. Illustration of distributed data and split-and-conquer approach. Distributed data storage: 
datasets are too large to be stored on a single facility or collected by different agencies and cannot be shared 
due to privacy. The split-and-conquer approach is widely used for learning under distributed data storage. It 
consists of the following 2 steps: 1) local inference: statistical inference on local machine and 2) aggregation: 
combine local results on a central machine. The most widely used aggregation approach is the linear average 
of local results. Split-and-conquer only requires one round of communication of summary statistics.

Split-and-conquer learning

Finite Gaussian mixtures

• A probabilistic model where there are finitely many Gaussian subpopulations in 
the entire population but the observed data have no direct information about 
which subpopulations they came from. 

• Density function of a Gaussian mixture of order   

 

• Parameter space  

K
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Figure 2. Illustration of the proposed aggregation method. When the parameter space of a model is a vector space, 
the local estimates are usually aggregated via their linear average. Under mixture models, the linear average cannot be 
directly used since the parameter space consists of discrete distributions with fixed number of support point and the linear 
average no longer belongs to this space. We instead propose to search for a parameter in the desired space that 
minimizes the composite transportation divergence to the mixing distribution obtained via linear average.

Composite transportation divergence

Experiments

Simulated Dataset

Methods for comparison

Performance criterion

Majorization-minimization algorithm

Statistical properties

C1 The data are IID observations from  with order . 

C5 Local triangular inequality  
Under conditions C1-C5, up to permutations, we have 

ϕG* K
A−1∥ϕ1 − ϕ2∥2

2 ≤ c(ϕ1, ϕ2) ≤ A∥ϕ1 − ϕ2∥2
2

ϕ̄R − ϕ*k = O(N−1/2), w̄R − w*k = O(N−1/2)

Equivalent optimization problem: let 

 

then we show that 

  

where  
Majorization function 

𝒥c(ϕḠ, ϕG) = ∑
n,m

πnmc(ϕ( ⋅ ; θ̄n), ϕ( ⋅ ; θm)) : ∑
m

πnm = w̄n

ḠR = argminG∈𝔾K
𝒥c(ϕḠ, ϕG) w̄R

k = ∑
n

πnk(ḠR)

π(G) = argmin𝒥(ϕḠ, ϕG)

𝒦(G |G(t)) = ∑
n,k

πnm(G(t))c(ϕ( ⋅ ; θ̄n), ϕ( ⋅ ; θk))

• Total sample size , number of local machines N = 221 M = 4,16,64

Table 1. The per observation log-likelihood (LL) value of different learning approaches on benchmark 
datasets. Our proposed method GMR has comparable LL value (the higher the better) to the global estimator 
and outperforms other split-and-conquer based existing methods. GMR has much shorter computational time 
than the global estimator.

• Global: estimator based on the full dataset (ideal case) 
• GMR: our proposed estimator with KL divergence as cost function 
• Median: the “best” local estimator 
• KLA: the aggregation approach in [1] 
• Coresets: the method learns a coreset locally and combine the coresets for learning

Our

Better

Better

Better

Harder

• : Wasserstein distance between the estimator and truth (the lower the better) 
• LL: per observation log-likelihood value (the higher the better) 
• Time: computational time (the lower the better)
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