Gaussian Mixture Reduction with Composite Transportation Divergence

Qiong Zhang
Renmin University of China

Archer Gong Zhang University of Toronto

Jiahua Chen
University of British Columbia

Background: Gaussian mixture

- Finite Gaussian mixture density: a convex combination of finitely many distinct Gaussian densities

$$
\phi(x ; G):=\int \phi(x ; \theta) d G(\theta)=\sum_{k=1}^{K} w_{k} \phi\left(x ; \theta_{k}\right)
$$

Background: Gaussian mixture

- Finite Gaussian mixture density: a convex combination of finitely many distinct Gaussian densities

$$
\begin{aligned}
& \phi(x ; G):=\int_{\text {Mixing distribution }} \phi(x ; \theta) d G(\theta)=\sum_{k=1}^{K} w_{k} \phi\left(x ; \theta_{k}\right) \\
& G=\sum_{k=1}^{K} w_{k} \delta_{\theta_{k}}
\end{aligned}
$$

Background: Gaussian mixture

- Finite Gaussian mixture density: a convex combination of finitely many distinct Gaussian densities

$$
\begin{gathered}
\phi(x ; G):=\int_{\text {Mixing distribution }} \phi(x ; \theta) d G(\theta)=\sum_{k=1}^{K} w_{k} \phi\left(x ; \mid \theta_{k}\right) \\
G=\sum_{k=1}^{K} w_{\text {Component parameter }}^{w_{k}} \delta_{\theta_{k}} \\
\hline \text { Mixin weight }
\end{gathered}
$$

Background: Gaussian mixture

- Finite Gaussian mixture density: a convex combination of finitely many distinct Gaussian densities

$$
\begin{aligned}
& \phi(x ; G):=\int_{\text {Mixing distribution }} \phi(x ; \theta) d G(\theta)=\sum_{k=1}^{\substack{\text { Order }}} w_{k} \phi\left(x ; \mid \theta_{k}\right) \\
& G=\sum_{k=1}^{K} w_{\text {Mixing weight }} \delta_{k} \delta_{\theta_{k}}
\end{aligned}
$$

Background: Gaussian mixture

- Finite Gaussian mixture density: a convex combination of finitely many distinct Gaussian densities

$$
\begin{aligned}
& \phi(x ; \boxed{G}):=\int_{\text {Mixing distribution }} \phi(x ; \theta) d G(\theta)=\sum_{k=1}^{\substack{\text { Order }}} w_{k} \phi\left(x ; \theta_{k}\right) \\
& G=\sum_{k=1 \text { Mixing weight }}^{K} w_{k} \delta_{\theta_{k}}
\end{aligned}
$$

- Universal approximation: Gaussian mixture can approximate almost any smooth density functions arbitrarily well

Background: Gaussian mixture

- Finite Gaussian mixture density: a convex combination of finitely many distinct Gaussian densities

- Universal approximation: Gaussian mixture can approximate almost any smooth density functions arbitrarily well

Background: Gaussian mixture

- Finite Gaussian mixture density: a convex combination of finitely many distinct Gaussian densities

- Universal approximation: Gaussian mixture can approximate almost any smooth density functions arbitrarily well
- Application: parametric density approximation

What is Gaussian mixture reduction (GMR)?

- Densities of mixtures with different orders may have close shapes

What is Gaussian mixture reduction (GMR)?

- Densities of mixtures with different orders may have close shapes

- Gaussian mixture reduction: approximate a high order mixture by one with a lower order

What is Gaussian mixture reduction (GMR)?

- Densities of mixtures with different orders may have close shapes

Original mixture $\phi(x ; G)=\sum_{n=1}^{N} w_{n} \phi\left(x ; \theta_{n}\right)$

- Gaussian mixture reduction: approximate a high order mixture by one with a lower order

What is Gaussian mixture reduction (GMR)?

- Densities of mixtures with different orders may have close shapes

Original mixture $\quad \phi(x ; G)=\sum_{n=1}^{N} w_{n} \phi\left(x ; \theta_{n}\right)$

$\phi(x ; \tilde{G})=\sum_{m=1}^{M} \tilde{w}_{m} \phi\left(x ; \tilde{\theta}_{m}\right) \quad$ Reduced mixture

- Gaussian mixture reduction: approximate a high order mixture by one with a lower order

What is Gaussian mixture reduction (GMR)?

- Densities of mixtures with different orders may have close shapes

Original mixture $\phi(x ; G)=\sum_{n=1}^{N} w_{n} \phi\left(x ; \theta_{n}\right)$

$$
\phi(x ; \tilde{G})=\sum_{m=1}^{M} \tilde{w}_{m} \phi\left(x ; \tilde{\theta}_{m}\right)
$$

Reduced mixture

- Gaussian mixture reduction: approximate a high order mixture by one with a lower order

Why GMR?

- Higher order mixture \rightarrow Heavier downstream computation cost

Why GMR?

- Higher order mixture \rightarrow Heavier downstream computation cost
- Orders does not carry scientific meanings in approximation

Why GMR?

- Higher order mixture \rightarrow Heavier downstream computation cost
- Orders does not carry scientific meanings in approximation
- Applications

Figure credit: Lei Yu et al. 2018
Recursive inference

- Belief propagation in graphical model (Yu et al., 2018)
- Tracking in hidden Markov model (Brubaker et al., 2015)

Why GMR?

- Higher order mixture \rightarrow Heavier downstream computation cost
- Orders does not carry scientific meanings in approximation
- Applications

Recursive inference

- Belief propagation in graphical model (Yu et al., 2018)
- Tracking in hidden Markov model (Brubaker et al., 2015)

Why GMR?

- Higher order mixture \rightarrow Heavier downstream computation cost
- Orders does not carry scientific meanings in approximation
- Applications

Why GMR?

- Higher order mixture \rightarrow Heavier downstream computation cost
- Orders does not carry scientific meanings in approximation
- Applications

- Belief propagation in graphical model (Yu et al., 2018)
- Tracking in hidden Markov model (Brubaker et al., 2015)

Why GMR?

- Higher order mixture \rightarrow Heavier downstream computation cost
- Orders does not carry scientific meanings in approximation
- Applications

- Belief propagation in graphical model (Yu et al., 2018)
- Tracking in hidden Markov model (Brubaker et al., 2015)

Existing approaches

- Greedy algorithm (Salmond, 1990; Runnalls, 2007; Assa and Plataniotis, 2018)

Existing approaches

- Greedy algorithm (Salmond, 1990; Runnalls, 2007; Assa and Plataniotis, 2018)

Existing approaches

- Greedy algorithm (Salmond, 1990; Runnalls, 2007; Assa and Plataniotis, 2018)

Existing approaches

- Greedy algorithm (Salmond, 1990; Runnalls, 2007; Assa and Plataniotis, 2018)

Existing approaches

- Greedy algorithm (Salmond, 1990; Runnalls, 2007; Assa and Plataniotis, 2018)

Existing approaches

- Greedy algorithm (Salmond, 1990; Runnalls, 2007; Assa and Plataniotis, 2018)

Existing approaches

- Greedy algorithm (Salmond, 1990; Runnalls, 2007; Assa and Plataniotis, 2018)

- Optimization-based (Williams and Maybeck, 2006): directly search for

$$
\tilde{G}=\operatorname{argmin}_{G^{\dagger} \in \mathbb{G}_{M}} \int\left\{\phi(x ; G)-\phi\left(x ; G^{\dagger}\right)\right\}^{2} d x
$$

Existing approaches

- Greedy algorithm (Salmond, 1990; Runnalls, 2007; Assa and Plataniotis, 2018)

- Optimization-based (Williams and Maybeck, 2006): directly search for

$$
\tilde{G}=\operatorname{argmin}_{G^{\dagger} \in \mathbb{G}_{M}} \int\left\{\phi(x ; G)-\phi\left(x ; G^{\dagger}\right)\right\}^{2} d x
$$

- Clustering-based (Schieferdecker and Huber, 2009; Assa and Plataniotis, 2018)

Existing approaches

- Greedy algorithm (Salmond, 1990; Runnalls, 2007; Assa and Plataniotis, 2018)

- Optimization-based (Williams and Maybeck, 2006): directly search for

$$
\tilde{G}=\operatorname{argmin}_{G^{\dagger} \in \mathbb{G}_{M}} \int\left\{\phi(x ; G)-\phi\left(x ; G^{\dagger}\right)\right\}^{2} d x
$$

- Clustering-based (Schieferdecker and Huber, 2009; Assa and Plataniotis, 2018)

Existing approaches

- Greedy algorithm (Salmond, 1990; Runnalls, 2007; Assa and Plataniotis, 2018)

- Optimization-based (Williams and Maybeck, 2006): directly search for

$$
\tilde{G}=\operatorname{argmin}_{G^{\dagger} \in \mathbb{G}_{M}} \int\left\{\phi(x ; G)-\phi\left(x ; G^{\dagger}\right)\right\}^{2} d x
$$

- Clustering-based (Schieferdecker and Huber, 2009; Assa and Plataniotis, 2018)

Existing approaches

- Greedy algorithm (Salmond, 1990; Runnalls, 2007; Assa and Plataniotis, 2018)

- Optimization-based (Williams and Maybeck, 2006): directly search for

$$
\tilde{G}=\operatorname{argmin}_{G^{\dagger} \in \mathbb{G}_{M}} \int\left\{\phi(x ; G)-\phi\left(x ; G^{\dagger}\right)\right\}^{2} d x
$$

- Clustering-based (Schieferdecker and Huber, 2009; Assa and Plataniotis, 2018)

Existing approaches

- Greedy algorithm (Salmond, 1990; Runnalls, 2007; Assa and Plataniotis, 2018)

- Optimization-based (Williams and Maybeck, 2006): directly search for

$$
\tilde{G}=\operatorname{argmin}_{G^{\dagger} \in \mathbb{G}_{M}} \int\left\{\phi(x ; G)-\phi\left(x ; G^{\dagger}\right)\right\}^{2} d x
$$

- Clustering-based (Schieferdecker and Huber, 2009; Assa and Plataniotis, 2018)

Space of Gaussian distributions

Moment matching

Existing approaches

- Greedy algorithm (Salmond, 1990; Runnalls, 2007; Assa and Plataniotis, 2018)

- Optimization-based (Williams and Maybeck, 2006): directly search for

$$
\tilde{G}=\operatorname{argmin}_{G^{\dagger} \in \mathbb{G}_{M}} \int\left\{\phi(x ; G)-\phi\left(x ; G^{\dagger}\right)\right\}^{2} d x
$$

- Clustering-based (Schieferdecker and Huber, 2009; Assa and Plataniotis, 2018)

Existing approaches

- Greedy algorithm (Salmond, 1990; Runnalls, 2007; Assa and Plataniotis, 2018)

Components of the reduced mixture

Existing approaches: pros \& cons

Approach	Pros and cons
Greedy	VFast computation XSub-optimal solution
Optimization-based	/Clear optimality target XHeavy computation: $\mathscr{O}\left(N M d^{3}+d^{4}\right)$ per iteration
Clustering-based	(Vast computation: $\mathcal{O}\left(N M d^{3}\right)$ per iteration XUnclear optimality target XUnknown algorithm convergence

Existing approaches: pros \& cons

Approach	Pros and cons
Greedy	$\sqrt{ }$ Fast computation XSub-optimal solution
Optimization-based	\checkmark Clear optimality target XHeavy computation: $\mathscr{O}\left(N M d^{3}+d^{4}\right)$ per iteration
Clustering-based	\checkmark Fast computation: $\mathcal{O}\left(N M d^{3}\right)$ per iteration XUnclear optimality target Contribution 1: find a general optimization objective XUnknown algorithm convergence

Existing approaches: pros \& cons

Approach	Pros and cons
Greedy	$\sqrt{ }$ Fast computation XSub-optimal solution
Optimization-based	$\sqrt{ }$ Clear optimality target XHeavy computation: $\mathcal{O}\left(N M d^{3}+d^{4}\right)$ per iteration
Clustering-based	$\sqrt{ }$ Fast computation: $\mathcal{O}\left(N M d^{3}\right)$ per iteration XUnclear optimality target Contribution 1: find a general optimization objective XUnknown algorithm convergence Contribution 2: establish algorithm convergence

Proposed method

Entropic regularized composite transportation divergence

- Let $c(\cdot, \cdot)$ be a divergence on the space of Gaussian distributions
- The entropic regularized composite transportation divergence between $\phi(x ; G)$ and $\phi(x ; \tilde{G})$ is defined to be

$$
\mathscr{T}_{c}^{\lambda}(\phi(\cdot ; G), \phi(\cdot ; \tilde{G}))=\min \left\{\sum_{n, m} \pi_{n m} c\left(\phi_{n}, \tilde{\phi}_{m}\right)-\lambda \mathscr{H}(\pi): \sum_{m} \pi_{n m}=w_{n}, \sum_{n} \pi_{n m}=\tilde{w}_{m}\right\}
$$

- A byproduct of the optimal transportation theory

Proposed method

Entropic regularized composite transportation divergence

- Let $c(\cdot, \cdot)$ be a divergence on the space of Gaussian distributions
- The entropic regularized composite transportation divergence between $\phi(x ; G)$ and $\phi(x ; \tilde{G})$ is defined to be

$$
\mathscr{T}_{c}^{\lambda}(\phi(\cdot ; G), \phi(\cdot ; \tilde{G}))=\min \left\{\sum_{n, m} \pi_{n m} c\left(\phi_{n}, \tilde{\phi}_{m}\right)-\lambda \mathscr{\mathscr { H } (\pi)}: \sum_{m} \pi_{n m}=w_{n}, \sum_{n} \pi_{n m}=\tilde{w}_{m}\right\}
$$

- A byproduct of the optimal transportation theory

Proposed method

Entropic regularized composite transportation divergence

- Let $c(\cdot, \cdot)$ be a divergence on the space of Gaussian distributions
- The entropic regularized composite transportation divergence between $\phi(x ; G)$ and $\phi(x ; \tilde{G})$ is defined to be

$$
\mathscr{T}_{c}^{\lambda}(\phi(\cdot ; G), \phi(\cdot ; \tilde{G}))=\min \left\{\sum_{n, m} \pi_{n m} c\left(\phi_{n}, \tilde{\phi}_{m}\right)-\lambda \sqrt{\mathscr{H}(\pi)}: \sum_{\text {Entropy }} \pi_{n m}=w_{n}, \sum_{n} \pi_{n m}=\tilde{w}_{m}\right\}
$$

- A byproduct of the optimal transportation theory
- Our proposed reduction mixture is

$$
\tilde{G}=\operatorname{argmin}_{G^{\dagger} \in \mathbb{G}_{M}} \mathscr{T}_{c}^{\lambda}\left(\phi(\cdot ; G), \phi\left(\cdot ; G^{\dagger}\right)\right)
$$

- We proposed a class of methods for various choices of the divergence $c(\cdot, \cdot)$

Our MM algorithm

1. Assignment step

$$
\pi_{n m}^{\lambda}\left(G^{(t)}\right)=w_{n} \frac{\exp \left(c\left(\phi_{n}, \phi_{m}^{(t)}\right) / \lambda\right)}{\sum_{k} \exp \left(c\left(\phi_{n}, \phi_{k}^{(t)}\right) / \lambda\right)}
$$

2. Update step

$$
\begin{gathered}
\phi_{m}^{(t+1)}=\operatorname{argmin}_{\phi} \sum_{n=1}^{N} \pi_{n m}^{\lambda}\left(G^{(t)}\right) c\left(\phi_{n}, \phi\right) \\
w_{m}^{(t+1)}=\sum_{n=1}^{N} \pi_{n m}^{\lambda}
\end{gathered}
$$

Our MM algorithm

1. Assignment step

$$
\pi_{n m}^{\pi_{n m}^{\lambda}\left(G^{(t)}\right)}=w_{n} \frac{\exp \left(c\left(\phi_{n}, \phi_{m}^{(t)}\right) / \lambda\right)}{\sum_{k} \exp \left(c\left(\phi_{n}, \phi_{k}^{(t)}\right) / \lambda\right)}
$$

2. Update step

$$
\begin{gathered}
\phi_{m}^{(t+1)}=\operatorname{argmin}_{\phi} \sum_{n=1}^{N} \pi_{n m}^{\lambda}\left(G^{(t)}\right) c\left(\phi_{n}, \phi\right) \\
w_{m}^{(t+1)}=\sum_{n=1}^{N} \pi_{n m}^{\lambda}
\end{gathered}
$$

Our MM algorithm

1. Assignment step

$$
\begin{aligned}
& \pi_{n m}^{\lambda}\left(G^{(t)}\right)=w_{n} \frac{\exp \left(c\left(\phi_{n}, \phi_{m}^{(t)}\right) / \lambda\right)}{\sum_{k} \exp \left(c\left(\phi_{n}, \phi_{k}^{(t)}\right) / \lambda\right)} \\
& \quad \text { Hard clustering as } \lambda \rightarrow 0
\end{aligned}
$$

$$
\begin{gathered}
\phi_{m}^{(t+1)}=\operatorname{argmin}_{\phi} \sum_{n=1}^{N} \pi_{n m}^{\lambda}\left(G^{(t)}\right) c\left(\phi_{n}, \phi\right) \\
w_{m}^{(t+1)}=\sum_{n=1}^{N} \pi_{n m}^{\lambda}
\end{gathered}
$$

Our MM algorithm

1. Assignment step

$$
\begin{array}{r}
\pi_{n m}^{\lambda}\left(G^{(t)}\right)=w_{n} \frac{\exp \left(c\left(\phi_{n}, \phi_{m}^{(t)}\right) / \lambda\right)}{\sum_{\text {ssignment plan }} \exp \left(c\left(\phi_{n}, \phi_{k}^{(t)}\right) / \lambda\right)} \\
\text { Hard clustering as } \lambda \rightarrow 0
\end{array}
$$

$$
\begin{gathered}
\phi_{m}^{(t+1)}=\operatorname{argmin}_{\phi} \sum_{n=1}^{N} \pi_{n m}^{\lambda}\left(G^{(t)}\right) c\left(\phi_{n}, \phi\right) \\
w_{m}^{(t+1)}=\sum_{n=1}^{N} \pi_{n m}^{\lambda}
\end{gathered} \begin{aligned}
& \text { - } \begin{array}{l}
\text { Barycenter on space of } \\
\text { Gaussian distributions } \\
\text { Have closed-form solutions } \\
\text { for certain choices of } c(\cdot, \cdot) \\
\text { such as the KL divergence }
\end{array}
\end{aligned}
$$

Algorithm convergence

- For hard clustering $(\lambda=0)$, worst case M^{N} iterations in theory and only 2-3 iterations in practice
- For soft clustering $(\lambda>0)$, analysis using mirror descent
- The MM update can be written as

$$
G^{(t+1)}=\operatorname{argmin}_{G}\left\{\mathscr{J}_{c}^{\lambda}\left(G^{(t)}\right)+\left\langle\nabla \mathscr{J}_{c}^{\lambda}\left(G^{(t)}\right), G-G^{(t)}\right\rangle+\sum_{m=1}^{M} \pi_{\cdot m}^{\lambda}\left(G^{(t)}\right) D_{A}\left(\theta_{m}, \theta_{m}^{(t)}\right)\right\}
$$

- Linear convergence

$$
\min _{t \leq T} \sum_{n, m} \pi_{n m}^{\lambda}\left(G^{(t)}\right) D_{A}\left(\theta_{m}^{(t)}, \theta_{m}^{(t+1)}\right) \leq \frac{\mathscr{J}_{c}^{\lambda}\left(G^{(0)}\right)-\mathcal{J}_{c}^{*}}{T}
$$

Real data-hand gesture recognition

Real data-hand gesture recognition

Build class prototype

Real data-hand gesture recognition

Build class prototype

10 comp mixture

Real data-hand gesture recognition

Real data-hand gesture recognition

Real data-hand gesture recognition

Build class prototype

10 comp mixture

Real data-hand gesture recognition

Build class prototype

10 comp mixture

Classify new images (closest divergence to prototype)
Prototype
(Only 10
images)

A

B

C

L

Y

Real data-hand gesture recognition

Build class prototype

10 comp mixture
Classify new images (closest divergence to prototype)
Prototype
(Only 10
images)

A

B

C

L

Y

Test image

Real data-hand gesture recognition

Build class prototype

10 comp mixture

Classify new images (closest divergence to prototype)
Prototype (Only 10 images)

A

B

C

L

Y

Test image

This is an "L"!

Real data-hand gesture recognition

Build class prototype

Classify new images (closest divergence to prototype)

Summary of our contribution

- We connect the existing clustering algorithms with the MM algorithm
- Establish the theoretical guarantees for the existing approach
- Reduction performance: the ISE is the optimal cost function among several choices

