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Approach Pros and cons

</Fast computation

Greedy X Sub-optimal solution

</ Clear optimality target

Optimization-based X Heavy computation: O(NMd?> + d*) per iteration

</Fast computation: 6(NMd?) per iteration
Clustering-based X Unclear optimality targe_tl Contribution 1: find a general optimization objective

X Unknown algorithm convergence| Contribution 2: establish algorithm convergence
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Proposed method

g
Entropic regularized composite transportation divergence

e Let c( -, - ) be a divergence on the space of Gaussian distributions
e The entropic regularized composite transportation divergence between ¢(x; G) and ¢(x; G) is defined to be

THP(-:G). (-G =min 3 D 7, (B Bp) = A2 D T = Wy Y Ty = W,
o Entropy " "

- A byproduct of the optimal transportation theory

e Our proposed reduction mixture is
G = argminGTeGMPfﬁ(d)( 1 G), p(-;G"))

e We proposed a class of methods for various choices of the divergence c( -, - )
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Our MM algorithm

1. Assignment step

exp(c(eh,, P/ 2)

(7)
exp(c(gh,, /Ié
Assignment plan Zk P( (¢n k )/ A
2. Update step Hard clustering as 1 — 0
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Our MM algorithm

1. Assignment step

P (G(t)) . exp(c(¢,, ¢;§?)//1)
o Y exp(eld 40D
Assignment plan  “APAEAPn: P
2. Update step Hard clusteringas 4 — 0

e Barycenter on space of

N
(r+1) _ - A (1) Gaussian distributions
¢m o argmmgb ﬂnm(G )C(¢n’ ¢) * Have closed-form solutions
n=1 for certain choices of c( -, )
such as the KL divergence
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Algorithm convergence

 For hard clustering (4 = 0), worst case MY iterations in theory and only 2-3 iterations in practice

 For soft clustering (4 > 0), analysis using mirror descent

* The MM update can be written as

M
GV = argmin; 4 FUGD) +(V FHGD),G - GV) + Y 7 (G)D,(,,.0)
m=1

* Linear convergence

IHGO) — 7
T

min Z 't (GYD,(OW, 91Dy <
tST n.m
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Real data-hand gesture recognition

Build class prototype
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Summary of our contribution

e \We connect the existing clustering algorithms with the MM algorithm
e [Establish the theoretical guarantees for the existing approach

e Reduction performance: the ISE is the optimal cost function among
several choices
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