

Gaussian Mixture Reduction with **Composite Transportation Divergence**

Qiong Zhang Renmin University of China

IEEE Transactions on Information Theory (2023) https://arxiv.org/pdf/2002.08410.pdf

Archer Gong Zhang University of Toronto

Jiahua Chen University of British Columbia

• Finite Gaussian mixture density: a convex combination of finitely many distinct Gaussian densities

$$\phi(x;G) := \int \phi(x;\theta) \, dG(\theta) = \sum_{k=1}^{K} w_k \phi(x;\theta_k)$$

• Finite Gaussian mixture density: a convex combination of finitely many distinct Gaussian densities

$$\phi(x; \mathbf{G}) := \int \phi(x; \theta) \, dG(\theta) = \sum_{k=1}^{K} w_k \phi(x; \theta_k)$$

Mixing distribution

k=1

 $G = \sum_{k=1}^{K} w_k \delta_{\theta_k}$

• Finite Gaussian mixture density: a convex combination of finitely many distinct Gaussian densities

$$\phi(x; \overline{G}) := \int \phi(x; \theta) \, dG(\theta) = \sum_{k=1}^{K} w_k \phi(x; \overline{\theta_k})$$

Mixing distribution Component parameter

k=1 Mixing weight

• Finite Gaussian mixture density: a convex combination of finitely many distinct Gaussian densities

$$\phi(x; \mathbf{G}) := \int \phi(x; \theta) \, d\theta$$

Mixing distribution

G =

k=1 Mixing weight

• Finite Gaussian mixture density: a convex combination of finitely many distinct Gaussian densities

$$\phi(x; \mathbf{G}) := \int \phi(x; \theta) \, d\theta$$

Mixing distribution

• Universal approximation: Gaussian mixture can approximate almost any smooth density functions arbitrarily well

• Finite Gaussian mixture density: a convex combination of finitely many distinct Gaussian densities

• Universal approximation: Gaussian mixture can approximate almost any smooth density functions arbitrarily well

• Finite Gaussian mixture density: a convex combination of finitely many distinct Gaussian densities

- Universal approximation: Gaussian mixture can approximate almost any smooth density functions arbitrarily well
- **Application:** parametric density approximation

Densities of mixtures with **different orders** may have **close shapes** ullet

Densities of mixtures with **different orders** may have **close shapes** \bullet

Densities of mixtures with **different orders** may have **close shapes** lacksquare

Densities of mixtures with **different orders** may have **close shapes** \bullet

Densities of mixtures with **different orders** may have **close shapes** \bullet

Higher order mixture → Heavier downstream computation cost

- Higher order mixture → Heavier downstream computation cost
- Orders does not carry scientific meanings in approximation

- Higher order mixture \rightarrow Heavier downstream computation cost
- Orders does not carry scientific meanings in approximation
- Applications

Figure credit: Lei Yu et al. 2018

Recursive inference

- Belief propagation in graphical model (Yu et al., 2018)
- Tracking in hidden Markov model (Brubaker et al., 2015)

- Higher order mixture \rightarrow Heavier downstream computation cost
- Orders does not carry scientific meanings in approximation
- Applications

Figure credit: Lei Yu et al. 2018

Recursive inference

- Belief propagation in graphical model (Yu et al., 2018)
- Tracking in hidden Markov model (Brubaker et al., 2015)

GMR

- Applications

Figure credit: Lei Yu et al. 2018

Recursive inference

- Tracking in hidden Markov model (Brubaker et al., 2015)

Distributed learning (Zhang & Chen 2022)

- Applications

Figure credit: Lei Yu et al. 2018

Recursive inference

- Tracking in hidden Markov model (Brubaker et al., 2015)

- Applications

Figure credit: Lei Yu et al. 2018

Recursive inference

- Tracking in hidden Markov model (Brubaker et al., 2015)

• Greedy algorithm (Salmond, 1990; Runnalls, 2007; Assa and Plataniotis, 2018)

N=3

.

• Optimization-based (Williams and Maybeck, 2006): directly search for

$$\tilde{G} = \operatorname{argmin}_{G^{\dagger} \in \mathbb{G}_{M}} \int \{\phi(x; G) - \phi(x; G^{\dagger})\}^{2} dx$$

• **Optimization-based** (*Williams and Maybeck, 2006*): directly search for

$$\tilde{G} = \operatorname{argmin}_{G^{\dagger} \in \mathbb{G}_{M}} \int \{\phi(x; G) - \phi(x; G^{\dagger})\}^{2} dx$$

• **Clustering-based** (Schieferdecker and Huber, 2009; Assa and Plataniotis, 2018)

• **Optimization-based** (*Williams and Maybeck, 2006*): directly search for

$$\tilde{G} = \operatorname{argmin}_{G^{\dagger} \in \mathbb{G}_{M}} \int \{\phi(x; G) - \phi(x; G^{\dagger})\}^{2} dx$$

• **Clustering-based** (Schieferdecker and Huber, 2009; Assa and Plataniotis, 2018)

• **Optimization-based** (*Williams and Maybeck, 2006*): directly search for

$$\tilde{G} = \operatorname{argmin}_{G^{\dagger} \in \mathbb{G}_{M}} \int \{\phi(x; G) - \phi(x; G^{\dagger})\}^{2} dx$$

• **Clustering-based** (Schieferdecker and Huber, 2009; Assa and Plataniotis, 2018)

• **Optimization-based** (*Williams and Maybeck, 2006*): directly search for

$$\tilde{G} = \operatorname{argmin}_{G^{\dagger} \in \mathbb{G}_{M}} \int \{\phi(x; G) - \phi(x; G^{\dagger})\}^{2} dx$$

• **Clustering-based** (Schieferdecker and Huber, 2009; Assa and Plataniotis, 2018)

• **Optimization-based** (*Williams and Maybeck, 2006*): directly search for

$$\tilde{G} = \operatorname{argmin}_{G^{\dagger} \in \mathbb{G}_{M}} \int \{\phi(x; G) - \phi(x; G^{\dagger})\}^{2} dx$$

• **Clustering-based** (Schieferdecker and Huber, 2009; Assa and Plataniotis, 2018)

• **Optimization-based** (*Williams and Maybeck, 2006*): directly search for

$$\tilde{G} = \operatorname{argmin}_{G^{\dagger} \in \mathbb{G}_{M}} \int \{\phi(x; G) - \phi(x; G^{\dagger})\}^{2} dx$$

• **Clustering-based** (Schieferdecker and Huber, 2009; Assa and Plataniotis, 2018)

• **Optimization-based** (*Williams and Maybeck, 2006*): directly search for

$$\tilde{G} = \operatorname{argmin}_{G^{\dagger} \in \mathbb{G}_{M}} \int \{\phi(x; G) - \phi(x; G^{\dagger})\}^{2} dx$$

• **Clustering-based** (Schieferdecker and Huber, 2009; Assa and Plataniotis, 2018)

Space of Gaussian distributions

Components of the reduced mixture

Existing approaches: pros & cons

Approach	Pros and cons
Greedy	 Fast comput Sub-optimal
Optimization-based	 Clear optima Heavy complete
Clustering-based	 Fast comput Unclear optin Unknown alo

utation I solution

ality target outation: $O(NMd^3 + d^4)$ per iteration

Fast computation: O(NMd³) per iteration
 Unclear optimality target
 Unknown algorithm convergence

Existing approaches: pros & cons

Pros and cons Approach Fast computation Greedy XSub-optimal solution \checkmark Clear optimality target **Optimization-based** ×Heavy computation: $\mathcal{O}(NMd^3 + d^4)$ per iteration \checkmark Fast computation: $\mathcal{O}(NMd^3)$ per iteration XUnclear optimality target Contribution 1: find a general optimization objective Clustering-based \times Unknown algorithm convergence

Existing approaches: pros & cons

Pros and cons Approach Fast computation Greedy XSub-optimal solution \checkmark Clear optimality target **Optimization-based** ×Heavy computation: $\mathcal{O}(NMd^3 + d^4)$ per iteration \checkmark Fast computation: $\mathcal{O}(NMd^3)$ per iteration XUnclear optimality target Contribution 1: find a general optimization objective Clustering-based XUnknown algorithm convergence Contribution 2: establish algorithm convergence

Proposed method

Entropic regularized composite transportation divergence

- Let $c(\cdot, \cdot)$ be a divergence on the space of Gaussian distributions
- The entropic regularized composite transportation divergence between $\phi(x; G)$ and $\phi(x; \tilde{G})$ is defined to be

$$\mathcal{T}_{c}^{\lambda}(\phi(\,\cdot\,;G),\phi(\,\cdot\,;\tilde{G})) = \min\left\{\sum_{n,m}\pi_{nm}c(\phi_{n},\tilde{\phi}_{m}) - \lambda\mathcal{H}(\pi):\sum_{m}\pi_{nm} = w_{n},\sum_{n}\pi_{nm} = \tilde{w}_{m}\right\}$$

A byproduct of the optimal transportation theory

Proposed method

Entropic regularized composite transportation divergence

- Let $c(\cdot, \cdot)$ be a divergence on the space of Gaussian distributions
- The entropic regularized composite transportation divergence between $\phi(x; G)$ and $\phi(x; \tilde{G})$ is defined to be

$$\mathcal{T}_{c}^{\lambda}(\phi(\,\cdot\,;G),\phi(\,\cdot\,;\tilde{G})) = \min\left\{\sum_{n,m}\pi_{nm}c(\phi_{n},\tilde{\phi}_{m}) - \lambda \mathcal{H}(\pi):\sum_{m}\pi_{nm} = w_{n},\sum_{n}\pi_{nm} = \tilde{w}_{m}\right\}$$

Entropy

A byproduct of the optimal transportation theory

Proposed method

Entropic regularized composite transportation divergence

- Let $c(\cdot, \cdot)$ be a divergence on the space of Gaussian distributions
- The entropic regularized composite transportation divergence between $\phi(x; G)$ and $\phi(x; G)$ is defined to be

$$\mathcal{T}_{c}^{\lambda}(\phi(\,\cdot\,;G),\phi(\,\cdot\,;\tilde{G})) = \min\left\{\sum_{n,m}\pi_{nm}c(\phi_{n},\tilde{\phi}_{m}) - \lambda \mathcal{H}(\pi):\sum_{m}\pi_{nm} = w_{n},\sum_{n}\pi_{nm} = \tilde{w}_{m}\right\}$$
Entropy

- A byproduct of the optimal transportation theory
- Our proposed reduction mixture is

$$\tilde{G} = \operatorname{argmin}_{G^{\dagger} \in \mathbb{G}_{M}} \mathcal{T}_{c}^{\lambda}(\phi(\,\cdot\,;G),\phi(\,\cdot\,;G^{\dagger}))$$

• We proposed a class of methods for various choices of the divergence $c(\cdot, \cdot)$

1. Assignment step

2. Update step

 $\pi_{nm}^{\lambda}(G^{(t)}) = w_n \frac{\exp(c(\phi_n, \phi_m^{(t)})/\lambda)}{\sum_k \exp(c(\phi_n, \phi_k^{(t)})/\lambda)}$

 $\phi_m^{(t+1)} = \operatorname{argmin}_{\phi} \sum^N \pi_{nm}^{\lambda}(G^{(t)})c(\phi_n, \phi)$ n=1 $w_m^{(t+1)} = \sum_{m=1}^N \pi_{nm}^{\lambda}$ n=1

1. Assignment step

Assignment plan

2. Update step

 $\pi_{nm}^{\lambda}(G^{(t)}) = w_n \frac{\exp(c(\phi_n, \phi_m^{(t)})/\lambda)}{\sum_k \exp(c(\phi_n, \phi_k^{(t)})/\lambda)}$

 $\phi_m^{(t+1)} = \operatorname{argmin}_{\phi} \sum^N \pi_{nm}^{\lambda}(G^{(t)})c(\phi_n, \phi)$ n=1 $w_m^{(t+1)} = \sum_{m=1}^N \pi_{nm}^{\lambda}$ n=1

1. Assignment step

 $\pi_{nm}^{\lambda}(G^{(t)}) = w_n \frac{\nabla}{\Sigma}$ Assignment plan

2. Update step

 $\phi_m^{(t+1)} = \operatorname{argmin}_{\phi}$

 $W_m^{(t+1)}$

$$\frac{\exp(c(\phi_n, \phi_m^{(t)})/\lambda)}{\sum_k \exp(c(\phi_n, \phi_k^{(t)})/\lambda)}$$
Hard clustering as $\lambda \to 0$

$$b \sum_{n=1}^N \pi_{nm}^{\lambda}(G^{(t)})c(\phi_n, \phi)$$

$$b = \sum_{n=1}^N \pi_{nm}^{\lambda}$$

1. Assignment step

Ass

2. Update step

$$\frac{\pi_{nm}^{\lambda}(G^{(t)})}{\sum_{k} \exp(c(\phi_{n},\phi_{m}^{(t)})/\lambda)} = w_{n} \frac{\exp(c(\phi_{n},\phi_{m}^{(t)})/\lambda)}{\sum_{k} \exp(c(\phi_{n},\phi_{k}^{(t)})/\lambda)} + \text{Hard clustering as } \lambda \to 0$$

$$\frac{\phi_{m}^{(t+1)} = \operatorname{argmin}_{\phi} \sum_{n=1}^{N} \pi_{nm}^{\lambda}(G^{(t)})c(\phi_{n},\phi)}{\sum_{k=1}^{N} \lambda} = \operatorname{argmin}_{\phi} \sum_{n=1}^{N} \pi_{nm}^{\lambda}(G^{(t)})c(\phi_{n},\phi)} = \operatorname{argmin}_{\phi} \sum_{n=1}^{N} \lambda$$

 $\sum \pi_{nm}^{n}$

n=1

 $W_m^{(l+1)} =$

- Barycenter on space of Gaussian distributions
- Have closed-form solutions for certain choices of $c(\cdot, \cdot)$ such as the KL divergence

Algorithm convergence

- For hard clustering ($\lambda = 0$), worst case M^N iterations in theory and only 2-3 iterations in practice
- For soft clustering ($\lambda > 0$), analysis using mirror descent
- The MM update can be written as

$$G^{(t+1)} = \operatorname{argmin}_{G} \left\{ \mathscr{J}_{c}^{\lambda}(G^{(t)}) + \langle \nabla \mathscr{J}_{c}^{\lambda}(G^{(t)}), G - G^{(t)} \rangle + \sum_{m=1}^{M} \pi_{\cdot m}^{\lambda}(G^{(t)}) D_{A}(\theta_{m}, \theta_{m}^{(t)}) \right\}$$

• Linear convergence

$$\min_{t \le T} \sum_{n,m} \pi_{nm}^{\lambda}(G^{(t)}) D_A(\theta_m^{(t)}, \theta_m^{(t+1)}) \le \frac{\mathcal{J}_c^{\lambda}(G^{(0)}) - \mathcal{J}_c^*}{T}$$

10 comp mixture

Build class prototype

10 comp mixture

Build class prototype

10 comp mixture

Build class prototype

10 comp mixture

10 comp mixture

Build class prototype

10 comp mixture

10 comp mixture

Build class prototype

10 comp mixture

Classify new images (closest divergence to prototype)

Build class prototype

10 comp mixture

Prototype (Only 10 images)

10 comp mixture

Classify new images (closest divergence to prototype)

Build class prototype

(Only 10 images)

10 comp mixture

10 comp mixture

Classify new images (closest divergence to prototype)

Build class prototype

Prototype (Only 10 images)

10 comp mixture

Summary of our contribution

- We connect the existing clustering algorithms with the MM algorithm
- Establish the theoretical guarantees for the existing approach
- Reduction performance: the ISE is the optimal cost function among several choices

11