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• Finite Gaussian mixture density: a convex combination of finitely many distinct Gaussian 
densities

• Universal approximation: Gaussian mixture can approximate almost any smooth density 
functions arbitrarily well
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• Gaussian mixture reduction: approximate a high order mixture by one with a lower order

ϕ(x; G) =
N

∑
n=1

wnϕ(x; θn) ϕ(x; G̃) =
M

∑
m=1

w̃mϕ(x; θ̃m)Original mixture Reduced mixture≈
M ≪ N
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Existing approaches: pros & cons

Approach Pros and cons

Greedy Fast computation

Sub-optimal solution

Optimization-based Clear optimality target

Heavy computation:                       per iteration

Clustering-based
Fast computation:               per iteration

Unclear optimality target 

Unknown algorithm convergence

𝒪(NMd3 + d4)

𝒪(NMd3)
Contribution 1: find a general optimization objective 

Contribution 2: establish algorithm convergence
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• Our proposed reduction mixture is 

 

• We proposed a class of methods for various choices of the divergence 

G̃ = argminG†∈𝔾M
𝒯λ

c(ϕ( ⋅ ; G), ϕ( ⋅ ; G†))

c( ⋅ , ⋅ )

Entropy



Our MM algorithm
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Assignment plan
Hard clustering as λ → 0

• Barycenter on space of 
Gaussian distributions


• Have closed-form solutions 
for certain choices of  
such as the KL divergence

c( ⋅ , ⋅ )



Algorithm convergence
• For hard clustering ( ), worst case  iterations in theory and only 2-3 iterations in practice


• For soft clustering ( ), analysis using mirror descent


• The MM update can be written as





• Linear convergence


λ = 0 MN

λ > 0

G(t+1) = argminG {𝒥λ
c(G(t)) + ⟨∇𝒥λ

c(G(t)), G − G(t)⟩ +
M

∑
m=1

πλ
⋅m(G(t))DA(θm, θ(t)

m )}

min
t≤T ∑

n,m
πλ

nm(G(t))DA(θ(t)
m , θ(t+1)

m ) ≤ 𝒥λ
c(G(0)) − 𝒥*c

T

9
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• We connect the existing clustering algorithms with the MM algorithm


• Establish the theoretical guarantees for the existing approach


• Reduction performance: the ISE is the optimal cost function among 
several choices

11

Summary of our contribution


