Byzantine-tolerant distributed

Qiong Zhang Yan Shuo Tan Jiahua Chen
RUC NUS UBC

Bike share

Example credit: Trevor Campbell

Bike share

Need to rebalance bikes-where do customers leave them?

Example credit: Trevor Campbell

Bike share

Need to rebalance bikes-where do customers leave them?

latitude

Example credit: Trevor Campbell

longitude

Bike share

Need to rebalance bikes-where do customers leave them?

A Density estimation
Mulki-modal

latitude

longitude

Example credit: Trevor Campbell

Bike share

Need to rebalance bikes-where do customers leave them?

A Density esktimation
Multi-wmodal

latitude

longitude

Example credit: Trevor Campbell

Human genetic clustering \-
Welcome to you

N

g N "]l]l“

Human genetic clustering \

Welcome to you

Do you want to know your ancestry from your gene?

KT 0 . aa
i

Human genetic clustering

Do you want to know your ancestry from your gene?

SNP1 SNP2 SNPN

—
a

-

R mr ‘

=

Ancestry
Service

Welcome to you

Human genetic clustering

Do you want to know your ancestry from your gene?

] SNP1 SNP2 SNPN
e o ®
& O
£ 0 ©

=

Ancestry
x Service

Welcome to you

PCA2

Human genetic clustering

Do you want to know your ancestry from your gene?

] SNP1 SNP2 SNPN
e o ®
& O
x O @

T

PCA2

Ancestry
x Service

Welcome to you

Finite mixture model

A family of distributions

Finite mixture model

A family of distributions

o letF ={f(x;0):0 € ®} be a parametric distribution family
e The finite mixture model of # with order K has its density function:

K
fol) = Jf(x; 0)dG(0) = Y w f(x:6,)
k=1

Finite mixture model

A family of distributions

o letF ={f(x;0):0 € ®} be a parametric distribution family
e The finite mixture model of # with order K has its density function:

K
fg®) = J f@:0)dG©O) = Y wf(x:6,) G = Zk:wkéek
k=1

Mixing distribution

Finite mixture model

A family of distributions

o letF ={f(x;0):0 € ®} be a parametric distribution family
e The finite mixture model of # with order K has its density function:

K
fo) = [f(:0)dGO) = Y w, f(x; G = Zk‘,ek

Mixing distribution k=1 Subpopulation parameter Mixing weight

Finite mixture model

A family of distributions

o letF ={f(x;0):0 € ®} be a parametric distribution family

e The finite mixture model of # with order K has its density function:

Order (known)
fg) = [f(X; 0)dG(0) =

Mixing distribution

wi S (x ;

k=1 Subpopulation parameter

G = Zek
k

Mixing weight

Finite mixture model

A family of distributions
o letF ={f(x;0):0 € ®} be a parametric distribution family

e The finite mixture model of # with order K has its density function:

Order (known)

— : — . G =) wp
foo) : [f(x, 0)dG(6) !wkf(x, 2]

Mixing distribution k=1 Subpopulation parameter Mixing weight

e e.g., finite Gaussian mixture
F = {pO; 1, %) = 272" exp{ = (x =)= (x —)12} : p € RY, T > 0}

Finite mixture model

A family of distributions
o letF ={f(x;0):0 € ®} be a parametric distribution family

e The finite mixture model of # with order K has its density function:

Order (known)

— : — . G =) wp
fo) Jf(x, 0)dG(0) !wkf(x, Ll

Mixing distribution k=1 Subpopulation parameter Mixing weight

e e.g., finite Gaussian mixture
F = {pO; 1, %) = 272" exp{ = (x =)= (x —)12} : p € RY, T > 0}
e Parameter space

K
Gy = {G =D w1 6, €0, w € (0.1), Y w = 1}

k=1 k

Finite mixture for density estimation

Finite mixture for density estimation

Finite mixture can be used to approximate density functions with various shapes

o U

Credit: Geoffrey McLachlan and David Peel — Finite Mixture Models

/

i BN .

B HESSEE

Finite mixture for model-based clustering

Finite mixture for model-based clustering

e Latent variable representation (Z not observed)

X|Z =k ~ f(x;0),
{P(sz) —w.kel[K]=1,..K

Finite mixture for model-based clustering

e Latent variable representation (Z not observed)

X|Z =k ~ f(x;0),
{P(sz) —w.kel[K]=1,..K

e Marginal of X is a mixture of order K

Finite mixture for model-based clustering

e Latent variable representation (Z not observed)

X|Z =k ~ f(x;0),
{P(sz) —w.kel[K]=1,..K

e Marginal of X is a mixture of order K

e Posterior distribution of the latent variable

P(Z=k|X =x) xw,f(x;6,)

Finite mixture for model-based clustering

Latent variable representation (Z not observed)

X|Z =k ~ f(x;0),
{P(sz) —w.kel[K]=1,..K

Marginal of X is a mixture of order K

Posterior distribution of the latent variable
P(Z=k|X =x) xw,f(x;6,)

Clustering(maximize posterior)

K(x;G) = argmaxje[K]wf(x; 0.

Finite mixture for model-based clustering

e Latent variable representation (Z not observed)

X|Z =k ~ f(x;0),
{P(sz) —w.kel[K]=1,..K

e Marginal of X is a mixture of order K

e Posterior distribution of the latent variable ‘-
P(Z=k|X =x) xw,f(x;6,) T

e Clustering(maximize posterior) How to estimate G from data?

K(x;G) = argmaxje[K]w-f(x; 0.

Distributed data storage & split-and-conquer

Distributed data storage & split-and-conquer

Local inference

Distributed data storage & split-and-conquer

cal inferenc
g\ ‘ 6,\\,;;\0“
<

Distributed data storage & split-and-conquer

Local inference
H o>
* atio °
6\\
&

Distributed data storage & split-and-conquer

Local inference
H 2
A0
* &
%

</ Privacy gain

Q Local machine Q Central machine

— —

Distributed data storage & split-and-conquer

Local inference
H 2
A0
i &
%

</ Privacy gain

</ Low transmission cost

Q Local machine Q Central machine

— —

SC learning under Euclidean parameter space

Euclidean parameter space

) R

: - Local estimates
A P Aggregation

SC learning under Euclidean parameter space

Euclidean parameter space

Local datasets R d
4
L]

.%‘1 00000000

A
5[2 (Y XX X &

VASRYYYY Y :. - Local estimates
: Y e P Aggregation

z%‘ 0000000

SC learning under Euclidean parameter space

Euclidean parameter space
Local datasets

d
A =n/N 4 R

.%‘1 00000000

X, eeeee ,:
13:7’1/N .

.%'3 000000

- Local estimates

...... P Aggregation

A, =nIN

:%‘m 0000000

IID observations fromf(x; 9*)

SC learning under Euclidean parameter space

Euclidean parameter space Rd

Local datasets Local estimates
A =n/N 4
.52’1 XYY YY) %él 5
5[2 YYXX) %éz :'
13 = n/N R .
X, eeoceee —0; :. - Local estimates
A P Aggregation
A, =nIN
(%'m 'YX XXX Y aém

IID observations fromf(x; 9*)

SC learning under Euclidean parameter space

Euclidean parameter space Rd

Local datasets Local estimates
.Sl’l XY Xxxxxl %él
5[2 YYXX) %éz
13 = n/N R
%3 eoo0000 %93 _> Local estimates
...... P Aggregation
A, =n/N Estimator

%L, e0eeeee | § AL i/ljéj

IID observations fromf(x; 9*)]=1

SC learning under Euclidean parameter space

Local datasets Local estimates

Ay =n/N
SARRYYYYY YY) %él
Ay =n/N
X, eeeee %éz

Ay =n/N A
9/"3 (XYY XY} %93
A, =nIN
X, eeeccee %ém

IID observations fromf(x; 9*)

Euclidean parameter space Rd

4
A !
: - Local estimates
A P Aggregation
Estimator _
m n: Local sample size
O = 1.0. m: Number of machines
J :
N: Total sample size

J=1

Why finite mixture is special?

Parameter space is non-Euclidean

Why finite mixture is special?

Parameter space is non-Euclidean

Parameterization by a vector has non-identifiability issue

Why finite mixture is special?

Parameter space is non-Euclidean

Parameterization by a vector has non-identifiability issue

e Consider f(x; G) = 0.4f(x; — 1) + 0.6f(x; 1)

Why finite mixture is special?

Parameter space is non-Euclidean

Parameterization by a vector has non-identifiability issue

e Consider f(x; G) = 0.4f(x; — 1) + 0.6f(x; 1)
e LetG, = (0.4, —1,0.6,1)and G, = (0.6,1,0.4, — 1)

Why finite mixture is special?

Parameter space is non-Euclidean

Parameterization by a vector has non-identifiability issue
e Consider f(x; G) = 0.4f(x; — 1) + 0.6f(x; 1)
o LetG,=(04,—1,0.6,1)and G, = (0.6,1,04, — 1)
e Non-identifiable: G; # G, butf(x; G|) = f(x; G,)

Why finite mixture is special?

Parameter space is non-Euclidean

Parameterization by a vector has non-identifiability issue
e Consider f(x; G) = 0.4f(x; — 1) + 0.6f(x; 1)
o LetG,=(04,—1,0.6,1)and G, = (0.6,1,04, — 1)
e Non-identifiable: G; # G, butf(x; G|) = f(x; G,)

e The mixing distribution G as a distribution does not have this issue

Why finite mixture is special?

Parameter space is non-Euclidean

Parameterization by a vector has non-identifiability issue

Consider f(x; G) = 0.4f(x; — 1) + 0.6f(x; 1)

Let G, = (0.4, — 1,0.6,1) and G, = (0.6,1,0.4, — 1)
Non-identifiable: G| # G, but f(x; G) = f(x; G,)

The mixing distribution G as a distribution does not have this issue

k=1

Why finite mixture is special?

Parameter space is non-Euclidean

Parameterization by a vector has non-identifiability issue
e Considerf(x;G) =0.4f(x; — 1) + 0.6f(x; 1)
o LetG,=(04,-1,0.6,1)and G, =(0.6,1,0.4, — 1)
e Non-identifiable: G; # G, butf(x; G|) = f(x; G,)
e The mixing distribution G as a distribution does not have this issue

K
. |6kE {G=Zwkégk:er®,wke(0,l),2wk= 1}

k=1 k

Parameter space: Discrete distribution with at most K support points

Why finite mixture is special?

Parameter space is non-Euclidean, conventional method does not apply

10 |

Why finite mixture is special?

Parameter space is non-Euclidean, conventional method does not apply

Parameter space Gg
(Discrete distributions with K support points)

10 |

Why finite mixture is special?

Parameter space is non-Euclidean, conventional method does not apply

Parameter space Gg
(Discrete distributions with K support points)

10 |

Why finite mixture is special?

Parameter space is non-Euclidean, conventional method does not apply

i=1
1 1 CAT.

Parameter space Gg
(Discrete distributions with K support points)

10 |

Why finite mixture is special?

Parameter space is non-Euclidean, conventional method does not apply
m
G=) MG

i=1
1 1 C' n

Parameter space Gg i
No longer in the
(Discrete distributions with K support points)

parame&ev spo&:af

10 |

‘Papar Linie

Our reduction based aggregation

m
= A

G =) G,

i=1

| 1o |

11 |

‘Paper Linie

Our reduction based aggregation

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR. K'Q)'

= Zhang and Chen (JMLR 2022): reduction approach

GR = arginfGeGKp(G, G)

11 |

‘P&Fer Linie

Our reduction based aggregation

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR. K'Q)'

Smallest composite = Zhang and Chen (JMLR 2022): reduction approach

transportation divergence GR = arginfGEGK p(G,G)

II II 4/' I = p(-,): composite transportation divergence (for efficient computation)
G =) G,
i=1

| 1o |

11 |

Paper Llink
Our reduction based aggregation |

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR. K'Q)'

Smallest composite = Zhang and Chen (JMLR 2022): reduction approach

transportation divergence GR = arginfGEGK p(G,G)

II II 4/' I = p(-,): composite transportation divergence (for efficient computation)

= GRis Op(N~"2) when n > m; \/N(G® — G*) - N(0,I7'(G*)) when
G = zm:ziéi m = o(n)
i=1

| 1o |

*The asymptotic results are represented after some ordering of the G into vectors

11 |

Paper Llink
Our reduction based aggregation |

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR. K'Q)'

Smallest composite Zhang and Chen (JMLR 2022): reduction approach

transportation divergence GR = arginfGEGK p(G,G)

p(-, +): composite transportation divergence (for efficient computation)

[
II | — I
GRis OP(N_I/Z) whenn > m; \/N(C_;R — G*) - N(0,I"1(G*)) when
-3 16 m = o)
i=1

= An efficient MM algorithm: K-means clustering on &

*The asymptotic results are represented after some ordering of the G into vectors

11 |

Paper Llink
Our reduction based aggregation |

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR. K'Q)'

Smallest composite Zhang and Chen (JMLR 2022): reduction approach

transportation divergence GR = arginfGEGK p(G,G)

p(-, +): composite transportation divergence (for efficient computation)

Il

GRis OP(N_I/Z) whenn > m; \/N(C_;R — G*) - N(0,I"1(G*)) when

- 4 A —
G =Y 4G m = o(n)
i=1 . . .
l = An efficient MM algorithm: K-means clustering on &
| [Space of # Demo:
0 ® o 0 estimatbe 2-
compohamf:
¢ o ® mixture with 3
machines

*The asymptotic results are represented after some ordering of the G into vectors

11 |

‘P&Fer Linie

Our reduction based aggregation '-

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR. K'Q)'

Smallest composite

transportation divergence GR = arginfGEGK p(G,G)

Il

= = An efficient MM algorithm: K-means clustering on
I | o I [Space of F
[.*.
[* [
[
Initialization

*The asymptotic results are represented after some ordering of the G into vectors

Zhang and Chen (JMLR 2022): reduction approach

p(-, +): composite transportation divergence (for efficient computation)

GRis OP(N_I/Z) whenn > m; \/N(C_;R — G*) - N(0,I"1(G*)) when

F

Demo:
estimate 2-
compohamf:
mixture with 3
machines

11 |

Paper Llink
Our reduction based aggregation |

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR. K'Q)'

Smallest composite Zhang and Chen (JMLR 2022): reduction approach

transportation divergence GR = arginfGEGK p(G,G)

p(-, +): composite transportation divergence (for efficient computation)

Il

GRis OP(N_I/Z) whenn > m; \/N(C_;R — G*) - N(0,I"1(G*)) when

- 4 A —
G =Y 4G m = o(n)
= = An efficient MM algorithm: K-means clustering on &
I | o I [Space of # "i’f‘"’E
o .0 estimate 2-
P ° compohamf:
*. mixture with 3
machines

Initialization—> Majorization

*The asymptotic results are represented after some ordering of the G into vectors

11 |

‘P&Fer Linie

Our reduction based aggregation '-

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR. K'Q)'

Smallest composite

transportation divergence GR = arginfGEGK p(G,G)

Il

= = An efficient MM algorithm: K-means clustering on
I | o I [Space of #
o oo
® X °
[

Initialization— Majorization—> Minimization

*The asymptotic results are represented after some ordering of the G into vectors

Zhang and Chen (JMLR 2022): reduction approach

p(-, +): composite transportation divergence (for efficient computation)

GRis OP(N_I/Z) whenn > m; \/N(C_;R — G*) - N(0,I"1(G*)) when

F

Demo:
estimate 2-
compohamf:
mixture with 3
machines

11 |

Paper Llink
Our reduction based aggregation |

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR. K'Q)'

Smallest composite Zhang and Chen (JMLR 2022): reduction approach

transportation divergence GR = arginfGEGK p(G,G)

p(-, +): composite transportation divergence (for efficient computation)

Il

GRis OP(N_I/Z) whenn > m; \/N(C_;R — G*) - N(0,I"1(G*)) when

- 4 A —
G =Y 4G m = o(n)
= = An efficient MM algorithm: K-means clustering on &
| [Space of # Demo:
9 ® .*. estimatbe 2-
o *) compohamf:
o mixture with 3
machines

Initialization— Majorization— Minimization—> Majorization

*The asymptotic results are represented after some ordering of the G into vectors

11 |

What is Byzantine failure?

A subset of these machines (Byzantine machines) may transmit arbitrary or malicious
messages to the central machine.

12 |

What is Byzantine failure?

A subset of these machines (Byzantine machines) may transmit arbitrary or malicious

messages to the central machine. _

sz.&h&ihé. machine

£ S W
/N

12 |

What is Byzantine failure?

A subset of these machines (Byzantine machines) may transmit arbitrary or malicious

messages to the central machine. _

The server receives: szanELne machine

G — éj whenj &€ B —>®<—
JT B
B hen) € / N\

What is the consequence?

13 |

What is the consequence?

Space of #
o [
N

13 |

What is the consequence?

Space of #

13 |

What is the consequence?

Space of #

L

13 |

What is the consequence?

Space of #

*s

13 |

What is the consequence?

Space of #

et

Distorted aggregation resulk

13 |

Existing Byzantine-tolerant aggregation methods

Robust alternative of mean such as:

Coordinate-wise median (Yin et al., 2018)

Geometric median (Lai et al., 2016; Steinhardt, 2019)

Trimmed mean (Yin et al., 2018)

Median of means (Lugosi and Mendelson, 2019)

Filtering (Diaklnikolas et al., 2017, 2019, Steinhardt et al., 2017; Zhu et al., 2021, Zhu et al., 2023)
Krum (Blanchard et al., 2017; Chen et al., 2018; El El Mhamdi et al., 2018)

No-regret (Zhu et al., 2021, Hopkins et al., 2020, Zhu et al., 2023)

GAN (Zhu et al., 2022; Gao et al., 2020, Zhu et al., 2023)

14 |

Existing Byzantine-tolerant aggregation methods

Developed for Euclidean parameter space, does not apply under mixture

Robust alternative of mean such as:

Coordinate-wise median (Yin et al., 2018)

Geometric median (Lai et al., 2016; Steinhardt, 2019)

Trimmed mean (Yin et al., 2018)

Median of means (Lugosi and Mendelson, 2019)

Filtering (Diaklnikolas et al., 2017, 2019, Steinhardt et al., 2017; Zhu et al., 2021, Zhu et al., 2023)
Krum (Blanchard et al., 2017; Chen et al., 2018; El El Mhamdi et al., 2018)

No-regret (Zhu et al., 2021, Hopkins et al., 2020, Zhu et al., 2023)

GAN (Zhu et al., 2022; Gao et al., 2020, Zhu et al., 2023)

14 |

Existing Byzantine-tolerant aggregation methods

Developed for Euclidean parameter space, does not apply under mixture

Robust alternative of mean such as:

= Coordinate-wise median (Yin et al., 2018) We consider Byzantine-tolerant
distributed learning of finite
» Geometric median (Lai et al., 2016; Steinhardt, 2019) mixture models

» Trimmed mean (Yin et al., 2018)

» Median of means (Lugosi and Mendelson, 2019)

» Filtering (Diaklnikolas et al., 2017, 2019; Steinhardt et al., 2017; Zhu et al., 2021, Zhu et al., 2023)
» Krum (Blanchard et al., 2017; Chen et al., 2018; El El Mhamdi et al., 2018)

= No-regret (Zhu et al., 2021; Hopkins et al., 2020, Zhu et al., 2023)

= GAN (Zhu et al., 2022; Gao et al., 2020, Zhu et al., 2023)

14 |

Our method at a glance

We consider the majority of the machines are failure-free, | B| = am with a < 1/2

15 |

Our method at a glance

We consider the majority of the machines are failure-free, |B| = am witha < 1/2

15 |

Our method at a glance

We consider the majority of the machines are failure-free, |B| = am witha < 1/2

Step 2

Aqgqgreqgate the remaining

15 |

Intuition for our method

The majority of failure free local estimators are within O(n
distance from G* in L?

_1ﬂ

16 |

Intuition for our method

The majority of failure free local estimators are within O(n
distance from G* in L?

—1/2)

Parameter space Gg

16 |

Intuition for our method

The majority of failure free local estimators are within O(n
distance from G* in L?

—1/2)

Parameter space Gg

wG*

16 |

Intuition for our method

The majority of failure free local estimators are within O(n
distance from G* in L?

—1/2)

Parameter space Gg

16 |

Intuition for our method

The majority of failure free local estimators are within O(n
distance from G* in L?

—1/2)

Parameter space Gg

16 |

Intuition for our method

The majority of failure free local estimators are within O(n
distance from G* in L?

—1/2)

« As both G, G' = G*, we have
nL*(G,G") ~#\/n(G — G')TH*\/n(G — G’

Parameter space Gg

16 |

Intuition for our method

The majority of failure free local estimators are within O(n
distance from G* in L?

—1/2)

. Asboth G, G’ — G*, we have ASYMp. generalized 7
nL*(G,G) ~ \/n(G — G) H*\/n(G - G

Parameter space Gg

16 |

Parameter space Gg

Intuition for our method

The majority of failure free local estimators are within O(n_l/ 2)

distance from G* in L2

. Asboth G, G’ — G*, we have ASYMp. generalized 7
nL*(G,G) ~ \/n(G — G) H*\/n(G - G

* For failure-free machine estimates

16 |

Parameter space Gg

Intuition for our method

The majority of failure free local estimators are within O(n_l/ 2)

distance from G* in L?

+ As both G, G’ — G*, we have ASymp. generalized X
nLX(G.G') ~ \/n(G — G) H*\/n(G — G')

* For failure-free machine estimates

| | L | L1 |
| | 1 1 >

L(G), G*¥) L(G,), G¥) L(G(1—ayms G¥)

16 |

Intuition for our method

The majority of failure free local estimators are within O(n_l/ 2)
distance from G* in L?
. As both G, G’ — G*, we have ASymp. generalized ¥
nL*(G,G) ~ \/n(G — G) H*\/n(G - G
* For failure-free machine estimates
Ve € (0,1/2)
| | L1 |
| | 1 - | o
L(G), G*) L(G), G¥) LGu-om G| LGy G¥)
I
Op(n™""?)

Parameter space Gg

16 |

Intuition for our method

The majority of failure free local estimators are within O(n_l/ 2)
distance from G* in L?
. As both G, G’ — G*, we have ASymp. generalized X’
nL*(G,G) ~ \/n(G — G) H*\/n(G - G
* For failure-free machine estimates
Ve € (0,1/2)
| | L] I >

| |
L(G1), G*) L(G), G¥)

L (é(1—e)m> G*)l

[l
Op(n~'"?)

L(é(l—a)m’ G*)

Parameter space Gg

16 |

Intuition for our method

The majority of failure free local estimators are within O(n

distance from G* in L?

—1/2)

. As both G, G’ — G*, we have ASYmp. generalized >

nL*(G,G) ~ \/n(G — G) H*\/n(G - G

* For failure-free machine estimates

Ve € (0,1/2)
| | ||

I I 1 .
L(G(l), G*) L(CA;(Q), G*) L(G(1—€)m’ G*)l

|l
Op(n—I/Z)

L(é(l—a)m’ G*)

>

Parameter space Gg

Asn,p, = 0

P(L(G;,G*) = p,n~"%) = 0(p;®)

16 |

Intuition for our method

The majority of failure free local estimators are within O(n_l/ 2)
distance from G* in L?
« As both G, G’ —» G*, we have Asymp. generalized)(2
nL*(G,G) ~ \/n(G — G) H*\/n(G - G
* For failure-free machine estimates
Ve € (0,1/2)
| | L1 I >

| | 1 -

|l
Op(n—I/Z)

L(é(l—a)m’ G*)

Parameter space Gg

Asn,p, = 0
P(L(G;,G*) = p,n~"%) = 0(p;®)

A slightly inflated ball of radius
O(pnn_”z) around a good initial
estimate contain almost all of the
failure-free local estimates

16 |

Proposed method: distance filtered mixture reduction

17 |

Proposed method: distance filtered mixture reduction

= We pick Center of attention (COAT) as the initial estimate

17 |

Proposed method: distance filtered mixture reduction

. . - . Parameter space Gg
= We pick Center of attention (COAT) as the initial estimate

A
A ®

o
o
o%o0

o

A

Failure rate: 30%

A Byzantine failure . Byzantine failure-free

17 |

Proposed method: distance filtered mixture reduction

. . - . Parameter space Gg
= We pick Center of attention (COAT) as the initial estimate

= The centre of the smallest ball that contains 50% of all
local estimates: GCOAT

A

» We denote the corresponding radius as yCOAT

A ®
o
o
o%o0
P
A

Failure rate: 30%

A Byzantine failure . Byzantine failure-free

17 |

Proposed method: distance filtered mixture reduction

. . - . Parameter space Gg
= We pick Center of attention (COAT) as the initial estimate

= The centre of the smallest ball that contains 50% of all
local estimates: GCOAT

» We denote the corresponding radius as yCOAT

Failure rate: 30%

A Byzantine failure . Byzantine failure-free

17 |

Proposed method: distance filtered mixture reduction

= We pick Center of attention (COAT) as the initial estimate

= The centre of the smallest ball that contains 50% of all

local estimates: GCOAT

» We denote the corresponding radius as r

Failure rate: 30%

A Byzantine failure . Byzantine failure-free

17 |

Proposed method: distance filtered mixture reduction

= We pick Center of attention (COAT) as the initial estimate

= The centre of the smallest ball that contains 50% of all

local estimates: GCOAT

» We denote the corresponding radius as r

Failure rate: 30%

A Byzantine failure . Byzantine failure-free

17 |

Proposed method: distance filtered mixture reduction

= We pick Center of attention (COAT) as the initial estimate

= The centre of the smallest ball that contains 50% of all

local estimates: GCOAT

» We denote the corresponding radius as r

Parameter space Gy

Failure rate: 30%

A Byzantine failure . Byzantine failure-free

17 |

Proposed method: distance filtered mixture reduction

. . - . Parameter space Gg
= We pick Center of attention (COAT) as the initial estimate

= The centre of the smallest ball that contains 50% of all
local estimates: GCOAT

» We denote the corresponding radius as yCOAT

. Select S, = (i : L(GCOAT, G) < prCOAT)

Failure rate: 30%

A Byzantine failure . Byzantine failure-free

17 |

Proposed method: distance filtered mixture reduction

Parameter space Gy

We pick Center of attention (COAT) as the initial estimate

= The centre of the smallest ball that contains 50% of all
local estimates: GCOAT
A

» We denote the corresponding radius as yCOAT A

Select S, = {i : L(GCOAT, G) < prCOAT)

Aggregation all local estimates in Sp

» p = 1:50% of local estimates are aggregated

= p > 1: more than 50% local estimates are aggregated

Failure rate: 30%

A Byzantine failure . Byzantine failure-free

17 |

Statistical guarantees

18 |

Statistical guarantees

e We establish the theoretical results under some regularity conditions

18 |

Statistical guarantees

e We establish the theoretical results under some regularity conditions

e Properties of the initial estimate
L(GCOAT, G*) = Op(n_”z) (mixture density)
o When strongly identifiable: ||(A;COAT — G*|| = 0p(n~'?) (mixing distribution as vector)

18 |

Statistical guarantees

e We establish the theoretical results under some regularity conditions

e Properties of the initial estimate
L(GCOAT, G*) = Op(n_”z) (mixture density)
o When strongly identifiable: ||GCOAT — G*|| = 0p(n~'?) (mixing distribution as vector)
e Properties of DFMR(p)
o Whenp = Q(m"1**%) for any § > 0, n > m, and strongly identifiable,
||GDFMR — G*|| = Op(N"? + @&, pn=""2) where @, the proportion of failure estimates
within 2pn =2 distance from G*
o HP(L(E, G*) <) = 0@ as r — 0, we have GPFMR = Goracle |, (y-1/2)

18 |

Real data: NIST clustering

19

Real data: NIST clustering

e Extract image features from pre-trained CNN ind = 50, m = 50

19

Real data: NIST clustering

e Extract image features from pre-trained CNN ind = 50, m = 50

19

7

e Extract image features from pre-trained CNN in d = 50, m = 50 5%2/0 5%7’(0
& @ &

e Byzantine failures: replace digits features with letter features on failure machines

29 29,
e Each machine fit a K = 10 Gaussian mixture

Real data: NIST clustering

19

Real data: NIST clustering

e Extract image features from pre-trained CNN ind = 50, m = 50

o}

e Byzantine failures: replace digits features with letter features on failure machines

e Each machine fit a K = 10 Gaussian mixture

b
%/g

19

Real data: NIST clustering

e Extract image features from pre-trained CNN in d = 50, m = 50
e Byzantine failures: replace digits features with letter features on failure machines

e Each machine fit a K = 10 Gaussian mixture

“IOTMOONDPOCONOUN&WNHO

19

Real data: NIST clustering 7ers
e Extract image features from pre-trained CNN in d = 50, m = 50 5%?//0
&7

e Byzantine failures: replace digits features with letter features on failure machines
957 &
e Each machine fit a K = 10 Gaussian mixture 2o
S 3

e Clustering performance: (the higher the better)

19

Real data: NIST clustering

%5
e Extract image features from pre-trained CNN in d = 50, m = 50 5%210 @
53
e Byzantine failures: replace digits features with letter features on failure machines
29, Coma
e Each machine fit a K = 10 Gaussian mixture 59:/0 SB/E
53 e X

e Clustering performance: (the higher the better)

Oracle

DFMR(p)

DFMR(1)

Trim

COAT

Vanilla

0.0
0.1
0.2
0.3
0.4

0.9195 (0.0014)
0.9193 (0.0015)
0.9192 (0.0015)
0.9189 (0.0017)
0.9189 (0.0017)

0.9195 (0.0014)
0.9194 (0.0014)
0.9194 (0.0013)
0.9194 (0.0015)
0.9195 (0.0014)

0.9186 (0.0018)
0.9185 (0.0018)
0.9186 (0.0020)
0.9186 (0.0018)
0.9186 (0.0018)

0.9034 (0.0116)
0.9035 (0.0118)
0.9042 (0.0112)
0.9040 (0.0107)
0.9037 (0.0117)

0.8896 (0.0108)
0.8898 (0.0106)
0.8898 (0.0106)
0.8898 (0.0104)
0.8892 (0.0110)

0.9195 (0.0014)
0.9043 (0.0050)
0.9046 (0.0044)
0.9041 (0.0046)
0.9042 (0.0049)

“IOTMOONDPOCONOUN&WNHO

19

Real data: NIST clustering

%5
e Extract image features from pre-trained CNN in d = 50, m = 50 3% b 5%2(0
& @ &
e Byzantine failures: replace digits features with letter features on failure machines
29, Coma
e Each machine fit a K = 10 Gaussian mixture 59:/0 SB/E
53 e X

e Clustering performance: (the higher the better)
Barrio et al. (2019) Single machine Aggregate all

Oracle

DFMR(p)

DFMR(1)

Trim

COAT

Vanilla

0.0
0.1
0.2
0.3
0.4

0.9195 (0.0014)
0.9193 (0.0015)
0.9192 (0.0015)
0.9189 (0.0017)
0.9189 (0.0017)

0.9195 (0.0014)
0.9194 (0.0014)
0.9194 (0.0013)
0.9194 (0.0015)
0.9195 (0.0014)

0.9186 (0.0018)
0.9185 (0.0018)
0.9186 (0.0020)
0.9186 (0.0018)
0.9186 (0.0018)

0.9034 (0.0116)
0.9035 (0.0118)
0.9042 (0.0112)
0.9040 (0.0107)
0.9037 (0.0117)

0.8896 (0.0108)
0.8898 (0.0106)
0.8898 (0.0106)
0.8898 (0.0104)
0.8892 (0.0110)

0.9195 (0.0014)
0.9043 (0.0050)
0.9046 (0.0044)
0.9041 (0.0046)
0.9042 (0.0049)

“IOTMOONDPOCONOUN&WNHO

19

Real data: NIST clustering

%5
e Extract image features from pre-trained CNN in d = 50, m = 50 3% b 5%2(0
& @ &
e Byzantine failures: replace digits features with letter features on failure machines
29, Coma
e Each machine fit a K = 10 Gaussian mixture 59:/0 SB/E
53 e X

e Clustering performance: (the higher the better)

Our method

Barrio et al. (2019) Single machine Aggregate all

Oracle

IDFMR(p)

DFMR(1)

Trim

COAT

Vanilla

0.0
0.1
0.2
0.3
0.4

0.9195 (0.0014)
0.9193 (0.0015)
0.9192 (0.0015)
0.9189 (0.0017)
0.9189 (0.0017)

0.9195 (0.0014)
0.9194 (0.0014)
0.9194 (0.0013)
0.9194 (0.0015)
0.9195 (0.0014)

0.9186 (0.0018)
0.9185 (0.0018)
0.9186 (0.0020)
0.9186 (0.0018)
0.9186 (0.0018)

0.9034 (0.0116)
0.9035 (0.0118)
0.9042 (0.0112)
0.9040 (0.0107)
0.9037 (0.0117)

0.8896 (0.0108)
0.8898 (0.0106)
0.8898 (0.0106)
0.8898 (0.0104)
0.8892 (0.0110)

0.9195 (0.0014)
0.9043 (0.0050)
0.9046 (0.0044)
0.9041 (0.0046)
0.9042 (0.0049)

“IOTMOONDPOCONOUN&WNHO

19

Real data: NIST clustering

e Extract image features from pre-trained CNN ind = 50, m = 50

e Byzantine failures: replace digits features with letter features on failure machines

e Each machine fit a K = 10 Gaussian mixture

e Clustering performance: (the higher the better)
Our method

Barrio et al. (2019) Single machine Aggregate all

«

Oracle

IDEMR(p)

DFMR(1)

Trim

COAT

Vanilla

0.0
0.1
0.2
0.3
0.4

0.9195 (0.0014)
0.9193 (0.0015)
0.9192 (0.0015)
0.9189 (0.0017)
0.9189 (0.0017)

0.9195 (0.0014)
0.9194 (0.0014)
0.9194 (0.0013)
0.9194 (0.0015)
0.9195 (0.0014)

0.9186 (0.0018)
0.9185 (0.0018)
0.9186 (0.0020)
0.9186 (0.0018)
0.9186 (0.0018)

0.9034 (0.0116)
0.9035 (0.0118)
0.9042 (0.0112)
0.9040 (0.0107)
0.9037 (0.0117)

0.8896 (0.0108)
0.8898 (0.0106)
0.8898 (0.0106)
0.8898 (0.0104)
0.8892 (0.0110)

0.9195 (0.0014)
0.9043 (0.0050)
0.9046 (0.0044)
0.9041 (0.0046)
0.9042 (0.0049)

e DFMR(1): select 50% local estimates for aggregation; DFMR(p) selects > 50%

“IOTMOONDPOCONOUN&WNHO

19

Real data: NIST clustering

e Extract image features from pre-trained CNN ind = 50, m = 50

e Byzantine failures: replace digits features with letter features on failure machines

e Each machine fit a K = 10 Gaussian mixture

e Clustering performance: (the higher the better)
Our method

Barrio et al. (2019) Single machine Aggregate all

«

Oracle

IDEMR(p)

DFMR(1)

Trim

COAT

Vanilla

0.0
0.1
0.2
0.3
0.4

0.9195 (0.0014)
0.9193 (0.0015)
0.9192 (0.0015)
0.9189 (0.0017)
0.9189 (0.0017)

0.9195 (0.0014)
0.9194 (0.0014)
0.9194 (0.0013)
0.9194 (0.0015)
0.9195 (0.0014)

0.9186 (0.0018)
0.9185 (0.0018)
0.9186 (0.0020)
0.9186 (0.0018)
0.9186 (0.0018)

0.9034 (0.0116)
0.9035 (0.0118)
0.9042 (0.0112)
0.9040 (0.0107)
0.9037 (0.0117)

0.8896 (0.0108)
0.8898 (0.0106)
0.8898 (0.0106)
0.8898 (0.0104)
0.8892 (0.0110)

0.9195 (0.0014)
0.9043 (0.0050)
0.9046 (0.0044)
0.9041 (0.0046)
0.9042 (0.0049)

e DFMR(1): select 50% local estimates for aggregation; DFMR(p) selects > 50%

e DFMR(p) with p € [1.35,3] is as good as the Oracle; DFMR(1) is comparable

~—IOTMONOPO@NOUEWNFO

i

19

Paper Link E E
Summary 0., 2
[=];

Distributed learning of finite mixture is difficult due to the
well-known “label switching problem”

The above issue makes existing aggregation approaches
and their Byzantine-tolerant inapplicable

We design the first Byzantine-tolerant aggregation method
for distributed learning of finite mixture models

We demonstrate that DFMR is both computationally efficient
and statistically sound.

20

Paper Link E E
Summary 0., 2
[=];

Distributed learning of finite mixture is difficult due to the
well-known “label switching problem”

The above issue makes existing aggregation approaches
and their Byzantine-tolerant inapplicable THANK YOU

We design the first Byzantine-tolerant aggregation method
for distributed learning of finite mixture models

We demonstrate that DFMR is both computationally efficient
and statistically sound.

20

