Byzantine-tolerant distributed learning of finite mixture models

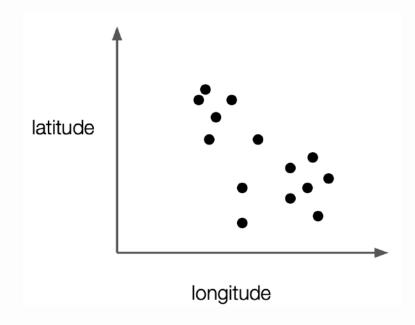
Qiong Zhang RUC

Yan Shuo Tan NUS

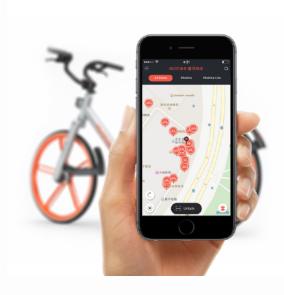
Jiahua Chen UBC

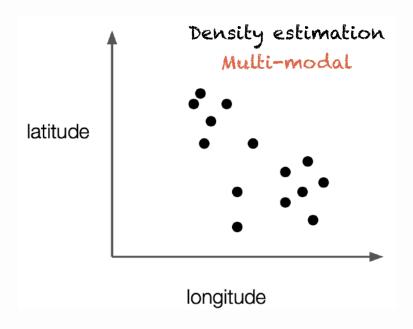
Need to rebalance bikes-where do customers leave them?

Need to rebalance bikes-where do customers leave them?

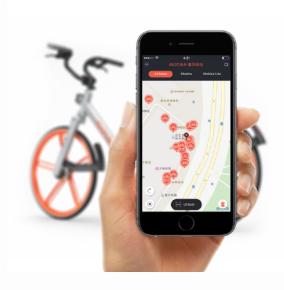


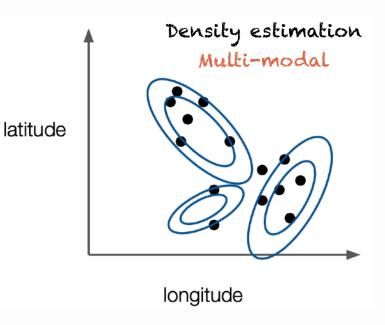
Need to rebalance bikes-where do customers leave them?

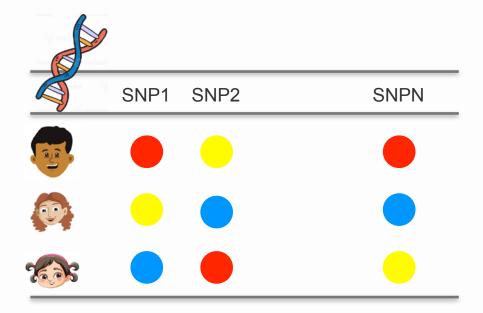


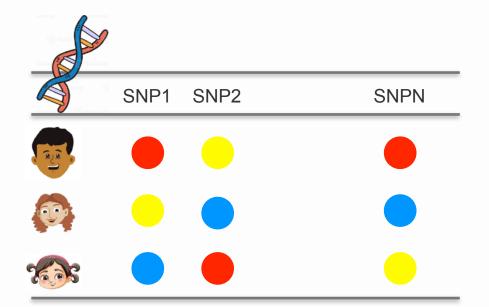


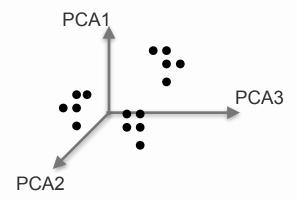
Need to rebalance bikes-where do customers leave them?

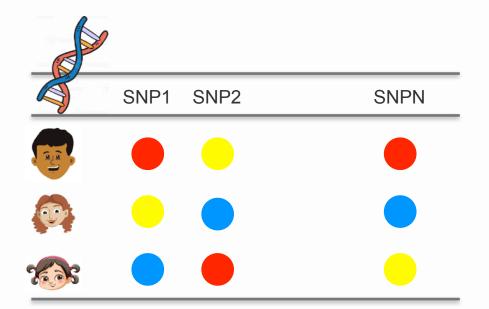


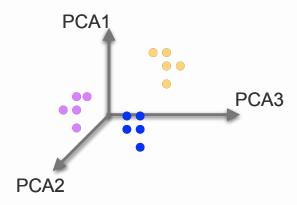












- Let $\mathcal{F} = \{f(x; \theta) : \theta \in \Theta\}$ be a parametric distribution family
- The finite mixture model of \mathcal{F} with order K has its density function:

$$f_G(x) := \int f(x; \theta) dG(\theta) = \sum_{k=1}^K w_k f(x; \theta_k)$$

- Let $\mathcal{F} = \{f(x; \theta) : \theta \in \Theta\}$ be a parametric distribution family
- The finite mixture model of \mathcal{F} with order K has its density function:

$$f_{\overline{G}}(x) := \int\limits_{K} f(x;\theta) \, dG(\theta) = \sum_{k=1}^K w_k f(x;\theta_k) \qquad \qquad G = \sum_k w_k \delta_{\theta_k} = \sum_k w_k \delta_{\theta_k}$$
 Mixing distribution

- Let $\mathcal{F} = \{f(x; \theta) : \theta \in \Theta\}$ be a parametric distribution family
- The finite mixture model of \mathcal{F} with order K has its density function:

$$f_{\overline{G}}(x) := \int f(x;\theta) \, dG(\theta) = \sum_{k=1}^K w_k f(x; \overline{\theta_k}) \qquad \qquad G = \sum_k w_k \delta_{\theta_k}$$
 Mixing distribution G is Subpopulation parameter Mixing weight

- Let $\mathcal{F} = \{f(x; \theta) : \theta \in \Theta\}$ be a parametric distribution family
- The finite mixture model of \mathcal{F} with order K has its density function:

$$f_{\overline{G}}(x) := \int\limits_{k=1}^{\text{Order (known)}} f(x;\theta) \, dG(\theta) = \sum_{k=1}^K w_k f(x;\theta_k) \qquad \qquad G = \sum_k w_k \delta_{\theta_k}$$
 Mixing distribution
$$G = \sum_k w_k \delta_{\theta_k}$$
 Mixing weight

A family of distributions

- Let $\mathcal{F} = \{ f(x; \theta) : \theta \in \Theta \}$ be a parametric distribution family
- The finite mixture model of \mathcal{F} with order K has its density function:

$$f_{\overline{G}}(x) := \int_{k=1}^{\infty} f(x;\theta) \, dG(\theta) = \sum_{k=1}^{\infty} w_k f(x;\theta_k) \qquad \qquad G = \sum_{k=1}^{\infty} w_k \delta_{\theta_k}$$
 Mixing distribution G = Subpopulation parameter Mixing weight

• e.g., finite Gaussian mixture

$$\mathcal{F} = \{ \phi(x; \mu, \Sigma) = |2\pi\Sigma|^{-1/2} \exp\{ -(x - \mu)^{\mathsf{T}} \Sigma^{-1} (x - \mu)/2 \} : \mu \in \mathbb{R}^d, \Sigma > 0 \}$$

A family of distributions

- Let $\mathcal{F} = \{ f(x; \theta) : \theta \in \Theta \}$ be a parametric distribution family
- The finite mixture model of \mathcal{F} with order K has its density function:

$$f_{\overline{G}}(x) := \int\limits_{k=1}^{\text{Order (known)}} f(x;\theta) \, dG(\theta) = \sum_{k=1}^{K} w_k f(x;\theta_k) \qquad \qquad G = \sum_k w_k \delta_{\theta_k}$$
 Mixing distribution Subpopulation parameter Mixing weight

• e.g., finite Gaussian mixture

$$\mathcal{F} = \{ \phi(x; \mu, \Sigma) = |2\pi\Sigma|^{-1/2} \exp\{ -(x - \mu)^{\mathsf{T}} \Sigma^{-1} (x - \mu)/2 \} : \mu \in \mathbb{R}^d, \Sigma > 0 \}$$

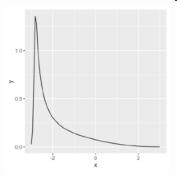
Parameter space

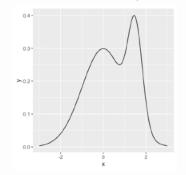
$$\mathbb{G}_K = \left\{ G = \sum_{k=1}^K w_k \delta_{\theta_k} : \theta_k \in \Theta, w_k \in (0,1), \sum_k w_k = 1 \right\}$$

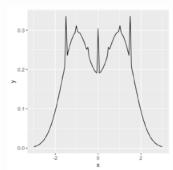
Finite mixture for density estimation

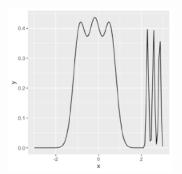
Finite mixture for density estimation

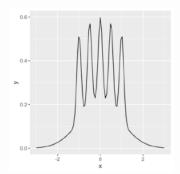
Finite mixture can be used to approximate density functions with various shapes

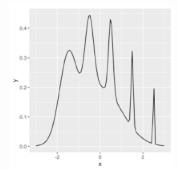












Credit: Geoffrey McLachlan and David Peel — Finite Mixture Models

Latent variable representation (Z not observed)

$$\begin{cases} X \mid Z = k \sim f(x; \theta_k), \\ P(Z = k) = w_k, k \in [K] = 1, ..., K \end{cases}$$

Latent variable representation (Z not observed)

$$\begin{cases} X \mid Z = k \sim f(x; \theta_k), \\ P(Z = k) = w_k, k \in [K] = 1, ..., K \end{cases}$$

• Marginal of *X* is a mixture of order *K*

Latent variable representation (Z not observed)

$$\begin{cases} X \mid Z = k \sim f(x; \theta_k), \\ P(Z = k) = w_k, k \in [K] = 1, ..., K \end{cases}$$

- Marginal of X is a mixture of order K
- Posterior distribution of the latent variable

$$P(Z = k | X = x) \propto w_k f(x; \theta_k)$$

Latent variable representation (Z not observed)

$$\begin{cases} X \mid Z = k \sim f(x; \theta_k), \\ P(Z = k) = w_k, k \in [K] = 1, ..., K \end{cases}$$

- Marginal of X is a mixture of order K
- Posterior distribution of the latent variable

$$P(Z = k | X = x) \propto w_k f(x; \theta_k)$$

Clustering(maximize posterior)

$$\kappa(x; G) = \operatorname{argmax}_{j \in [K]} w_j f(x; \theta_j)$$

Latent variable representation (Z not observed)

$$\begin{cases} X \mid Z = k \sim f(x; \theta_k), \\ P(Z = k) = w_k, k \in [K] = 1, ..., K \end{cases}$$

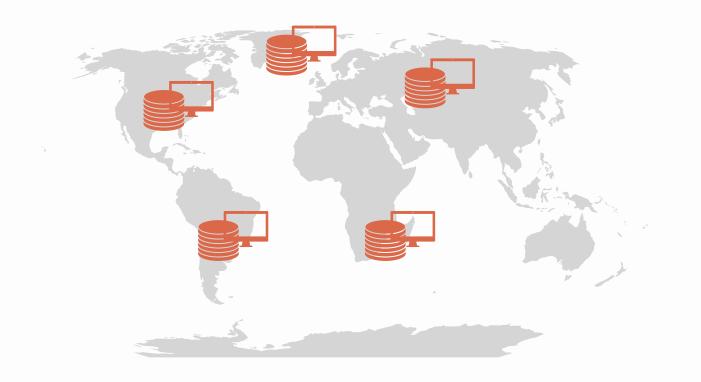
- Marginal of X is a mixture of order K
- Posterior distribution of the latent variable

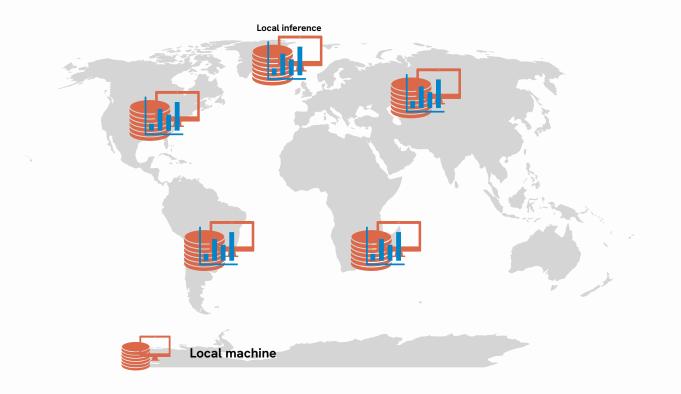
$$P(Z = k | X = x) \propto w_k f(x; \theta_k)$$

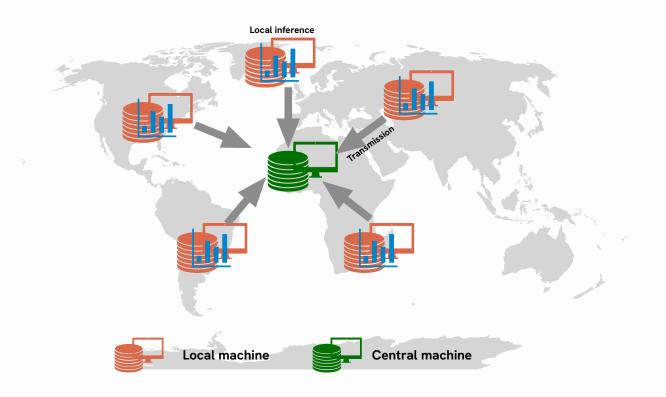
Clustering(maximize posterior)

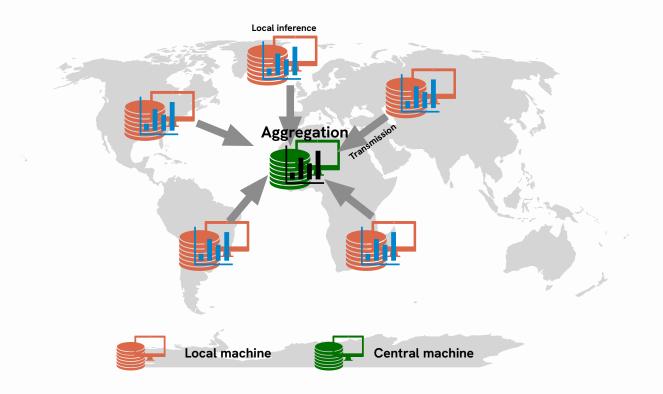
$$\kappa(x; G) = \operatorname{argmax}_{j \in [K]} w_j f(x; \theta_j)$$

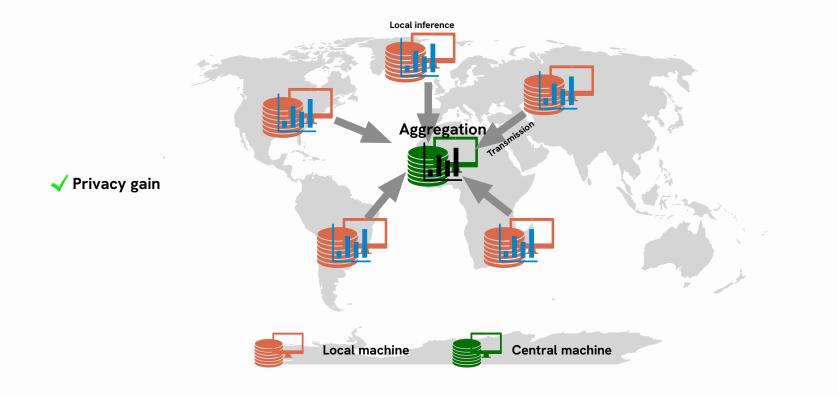
How to estimate *G* from data?

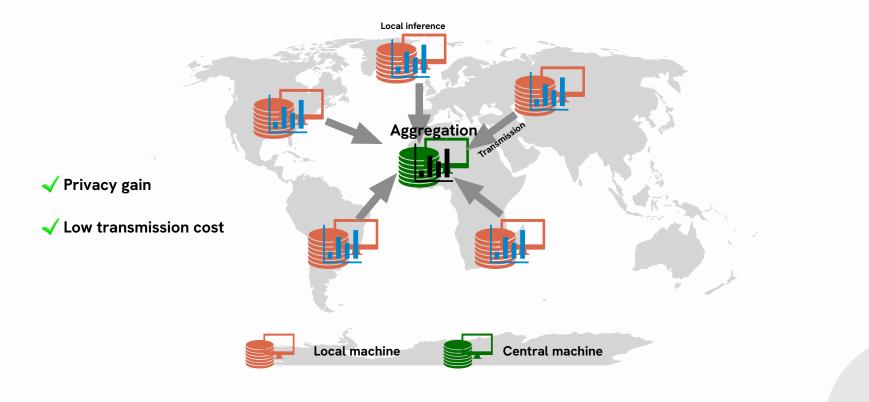


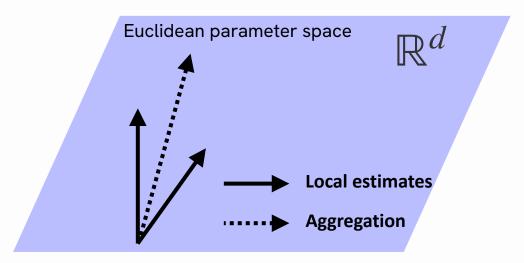


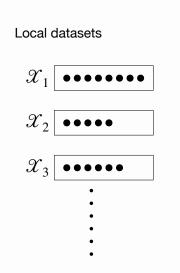


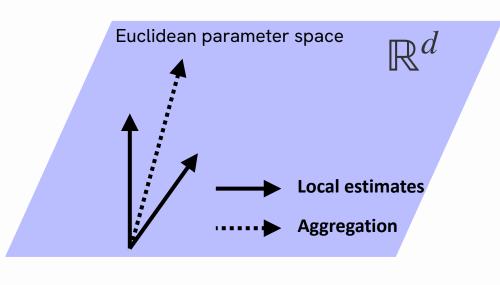




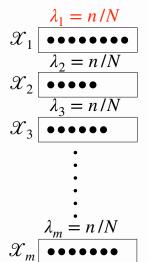


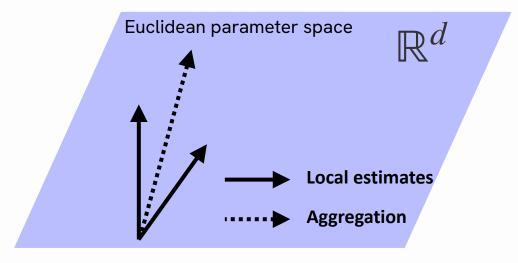




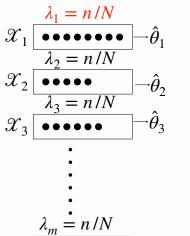


Local datasets





IID observations from $f(x; \theta^*)$



Euclidean parameter space

Local estimates

Aggregation

IID observations from $f(x; \theta^*)$

SC learning under **Euclidean** parameter space

Local datasets Local estimates

$$\lambda_{1} = n/N$$

$$\mathcal{X}_{1} \bullet \bullet \bullet \bullet \bullet \bullet \bullet -\hat{\theta}_{1}$$

$$\lambda_{2} = n/N$$

$$\mathcal{X}_{2} \bullet \bullet \bullet \bullet -\hat{\theta}_{2}$$

$$\lambda_{3} = n/N$$

$$\mathcal{X}_{3} \bullet \bullet \bullet \bullet \bullet -\hat{\theta}_{3}$$

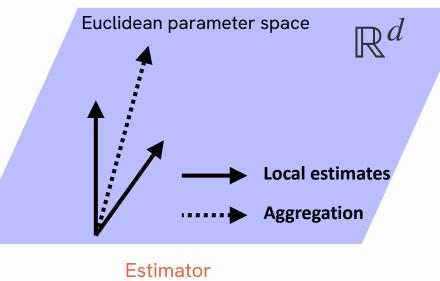
$$\vdots$$

$$\vdots$$

$$\lambda_{m} = n/N$$

$$\mathcal{X}_{m} \bullet \bullet \bullet \bullet \bullet -\hat{\theta}_{m}$$

IID observations from $f(x; \theta^*)$

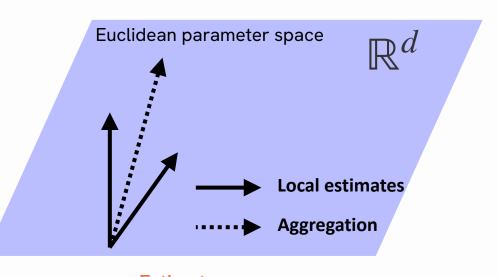


$$\overline{\theta} = \sum_{j=1}^{m} \lambda_j \hat{\theta}_j$$

SC learning under **Euclidean** parameter space

Local datasets Local estimates $\lambda_1 = n/N$ $\lambda_2 = n/N$ $\lambda_3 = \overline{n/N}$ $\lambda_m = n/N$

IID observations from $f(x; \theta^*)$



Estimator
$$\bar{\theta} = \sum_{j=1}^{m} \lambda_j \hat{\theta}_j$$

n: Local sample size

m: Number of machines

N: Total sample size

Parameter space is non-Euclidean

Parameter space is non-Euclidean

Parameter space is non-Euclidean

Parameterization by a vector has non-identifiability issue

• Consider f(x; G) = 0.4f(x; -1) + 0.6f(x; 1)

Parameter space is non-Euclidean

- Consider f(x; G) = 0.4f(x; -1) + 0.6f(x; 1)
- Let $G_1 = (0.4, -1, 0.6, 1)$ and $G_2 = (0.6, 1, 0.4, -1)$

Parameter space is non-Euclidean

- Consider f(x; G) = 0.4f(x; -1) + 0.6f(x; 1)
- Let $G_1 = (0.4, -1, 0.6, 1)$ and $G_2 = (0.6, 1, 0.4, -1)$
- Non-identifiable: $\mathbf{G}_1 \neq \mathbf{G}_2$ but $f(x; \mathbf{G}_1) = f(x; \mathbf{G}_2)$

Parameter space is non-Euclidean

- Consider f(x; G) = 0.4f(x; -1) + 0.6f(x; 1)
- Let $G_1 = (0.4, -1, 0.6, 1)$ and $G_2 = (0.6, 1, 0.4, -1)$
- Non-identifiable: $\mathbf{G}_1 \neq \mathbf{G}_2$ but $f(x; \mathbf{G}_1) = f(x; \mathbf{G}_2)$
- The mixing distribution G as a distribution does not have this issue

Parameter space is non-Euclidean

- Consider f(x; G) = 0.4f(x; -1) + 0.6f(x; 1)
- Let $G_1 = (0.4, -1, 0.6, 1)$ and $G_2 = (0.6, 1, 0.4, -1)$
- Non-identifiable: $\mathbf{G}_1 \neq \mathbf{G}_2$ but $f(x; \mathbf{G}_1) = f(x; \mathbf{G}_2)$
- \bullet The mixing distribution G as a distribution does not have this issue

Parameter space is non-Euclidean

Parameterization by a vector has non-identifiability issue

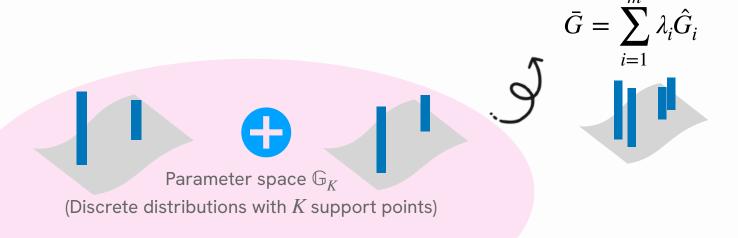
- Consider f(x; G) = 0.4f(x; -1) + 0.6f(x; 1)
- Let $G_1 = (0.4, -1, 0.6, 1)$ and $G_2 = (0.6, 1, 0.4, -1)$
- Non-identifiable: $\mathbf{G}_1 \neq \mathbf{G}_2$ but $f(x; \mathbf{G}_1) = f(x; \mathbf{G}_2)$
- \bullet The mixing distribution G as a distribution does not have this issue

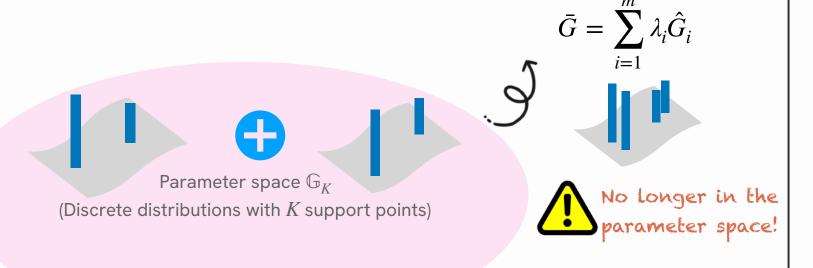
$$\bullet \quad \boxed{\mathbb{G}_K} = \left\{ G = \sum_{k=1}^K w_k \delta_{\theta_k} : \theta_k \in \Theta, w_k \in (0,1), \sum_k w_k = 1 \right\}$$

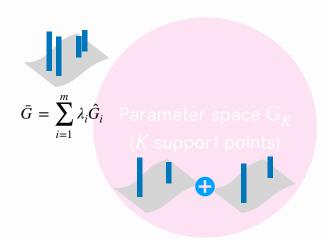
Parameter space: Discrete distribution with at most K support points

Parameter space is non-Euclidean, conventional method does not apply

Parameter space \mathbb{G}_{K} (Discrete distributions with K support points)





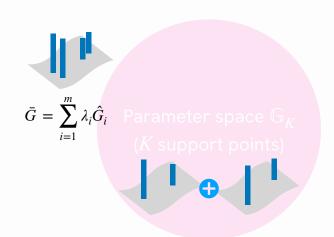


ipe, iina

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR.

Zhang and Chen (JMLR 2022): reduction approach

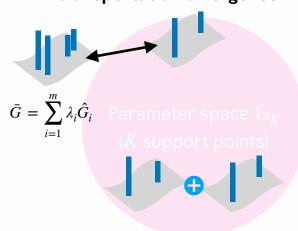
$$\bar{G}^{\mathit{R}} = \mathrm{arginf}_{G \in \mathbb{G}_{\mathit{K}}} \rho(\bar{G}, G)$$



Paper link

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR.

Smallest composite transportation divergence



Zhang and Chen (JMLR 2022): reduction approach

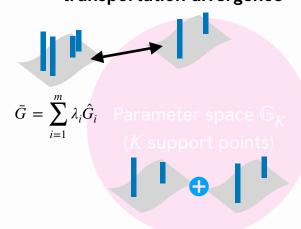
$$\bar{G}^{\mathit{R}} = \mathrm{arginf}_{G \in \mathbb{G}_{\mathit{K}}} \rho(\bar{G}, G)$$

 \bullet $\rho(\cdot,\cdot)$: composite transportation divergence (for efficient computation)

raper link

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR.

Smallest composite transportation divergence



Zhang and Chen (JMLR 2022): reduction approach

$$\bar{G}^{\mathit{R}} = \mathrm{arginf}_{G \in \mathbb{G}_{\mathit{K}}} \rho(\bar{G}, G)$$

- ullet $ho(\,\cdot\,,\cdot\,)$: composite transportation divergence (for efficient computation)
- \bullet \bar{G}^R is $O_P(N^{-1/2})$ when $n\geq m$; $\sqrt{N}(\bar{G}^R-G^*)\to N(0,\!I^{-1}(G^*))$ when m=o(n)

raper link

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR.

Smallest composite transportation divergence



Zhang and Chen (JMLR 2022): reduction approach

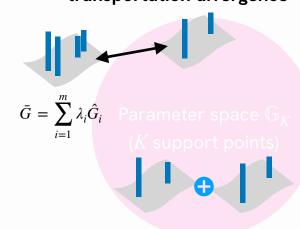
$$\bar{G}^{\mathit{R}} = \mathrm{arginf}_{G \in \mathbb{G}_{\mathit{K}}} \rho(\bar{G}, G)$$

- ullet $ho(\,\cdot\,,\cdot\,)$: composite transportation divergence (for efficient computation)
- \bullet \bar{G}^R is $O_P(N^{-1/2})$ when $n\geq m$, $\sqrt{N}(\bar{G}^R-G^*)\rightarrow N(0,I^{-1}(G^*))$ when m=o(n)
- ullet An efficient MM algorithm: K-means clustering on ${\mathcal F}$

raper link

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR.

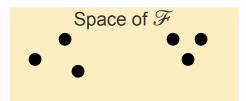
Smallest composite transportation divergence



Zhang and Chen (JMLR 2022): reduction approach

$$\bar{G}^{\mathit{R}} = \mathrm{arginf}_{G \in \mathbb{G}_{\mathit{K}}} \rho(\bar{G}, G)$$

- ullet $ho(\,\cdot\,,\cdot\,)$: composite transportation divergence (for efficient computation)
- \bullet \bar{G}^R is $O_P(N^{-1/2})$ when $n\geq m$, $\sqrt{N}(\bar{G}^R-G^*)\rightarrow N(0,I^{-1}(G^*))$ when m=o(n)
- ullet An efficient MM algorithm: K-means clustering on ${\mathcal F}$

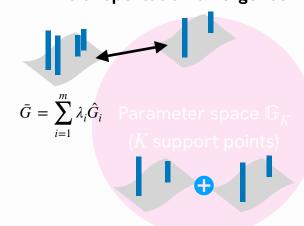


Demo:
estimate 2component
mixture with 3
machines

المادة المادة

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR.

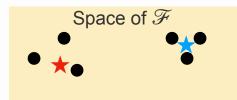
Smallest composite transportation divergence



Zhang and Chen (JMLR 2022): reduction approach

$$\bar{G}^{\mathit{R}} = \mathrm{arginf}_{G \in \mathbb{G}_{\mathit{K}}} \rho(\bar{G}, G)$$

- ullet $ho(\,\cdot\,,\cdot\,)$: composite transportation divergence (for efficient computation)
- \bullet \bar{G}^R is $O_P(N^{-1/2})$ when $n\geq m$, $\sqrt{N}(\bar{G}^R-G^*)\rightarrow N(0,I^{-1}(G^*))$ when m=o(n)
- An efficient MM algorithm: K-means clustering on \mathcal{F}



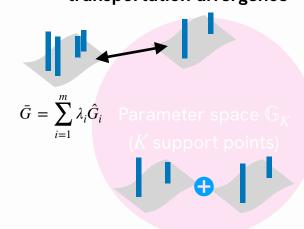
Demo:
estimate 2component
mixture with 3
machines

Initialization

uper link

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR.

Smallest composite transportation divergence



Zhang and Chen (JMLR 2022): reduction approach

$$\bar{G}^{\mathit{R}} = \mathrm{arginf}_{G \in \mathbb{G}_{\mathit{K}}} \rho(\bar{G}, G)$$

- ullet $ho(\,\cdot\,,\cdot\,)$: composite transportation divergence (for efficient computation)
- \bullet \bar{G}^R is $O_P(N^{-1/2})$ when $n\geq m$, $\sqrt{N}(\bar{G}^R-G^*)\rightarrow N(0,I^{-1}(G^*))$ when m=o(n)
- ullet An efficient MM algorithm: K-means clustering on ${\mathcal F}$

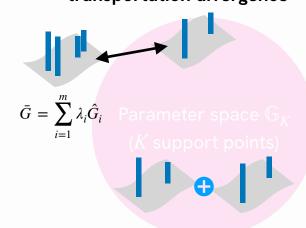
Demo:
estimate 2component
mixture with 3
machines

Initialization → Majorization

aper link

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR.

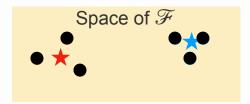
Smallest composite transportation divergence



Zhang and Chen (JMLR 2022): reduction approach

$$\bar{G}^{\mathit{R}} = \mathrm{arginf}_{G \in \mathbb{G}_{\mathit{K}}} \rho(\bar{G}, G)$$

- ullet $\rho(\,\cdot\,,\,\cdot\,)$: composite transportation divergence (for efficient computation)
- \bullet \bar{G}^R is $O_P(N^{-1/2})$ when $n\geq m$, $\sqrt{N}(\bar{G}^R-G^*)\rightarrow N(0,I^{-1}(G^*))$ when m=o(n)
- ullet An efficient MM algorithm: K-means clustering on ${\mathcal F}$



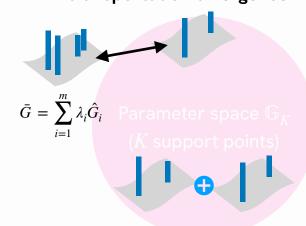
Demo:
estimate 2component
mixture with 3
machines

Initialization → Majorization → Minimization

uper link

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR.

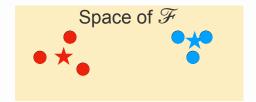
Smallest composite transportation divergence



Zhang and Chen (JMLR 2022): reduction approach

$$\bar{G}^{\mathit{R}} = \mathrm{arginf}_{G \in \mathbb{G}_{\mathit{K}}} \rho(\bar{G}, G)$$

- ullet $\rho(\,\cdot\,,\cdot\,)$: composite transportation divergence (for efficient computation)
- \bullet \bar{G}^R is $O_P(N^{-1/2})$ when $n\geq m$, $\sqrt{N}(\bar{G}^R-G^*)\rightarrow N(0,I^{-1}(G^*))$ when m=o(n)
- ullet An efficient MM algorithm: K-means clustering on ${\mathcal F}$



Demo:
estimate 2component
mixture with 3
machines

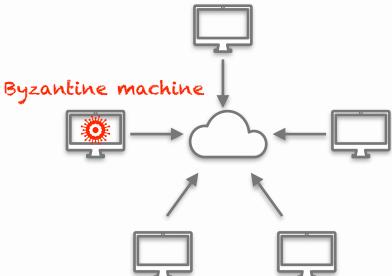
Initialization → Majorization → Minimization → Majorization

What is Byzantine failure?

A subset of these machines (*Byzantine machines*) may transmit arbitrary or malicious messages to the central machine.

What is Byzantine failure?

A subset of these machines (*Byzantine machines*) may transmit arbitrary or malicious messages to the central machine.



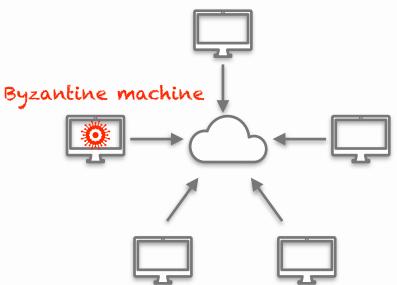
What is Byzantine failure?

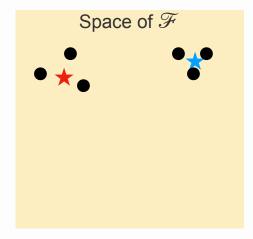
A subset of these machines (*Byzantine machines*) may transmit arbitrary or malicious messages to the central machine.

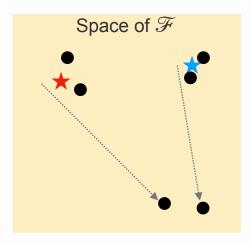
The server receives:

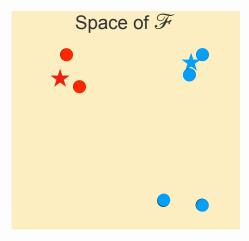
$$ilde{G}_j = egin{cases} \hat{G}_j, & ext{when } j
otin \mathbb{B} \ ar{\xi}_i, & ext{when } j \in \mathbb{B} \end{cases}$$

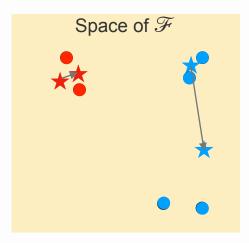
Arbitrary mixing distribution

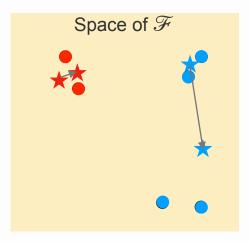












> Distorted aggregation result

Existing Byzantine-tolerant aggregation methods

Robust alternative of mean such as:

- Coordinate-wise median (Yin et al., 2018)
- Geometric median (Lai et al., 2016; Steinhardt, 2019)
- Trimmed mean (Yin et al., 2018)
- Median of means (Lugosi and Mendelson, 2019)
- Filtering (Diaklnikolas et al., 2017, 2019; Steinhardt et al., 2017; Zhu et al., 2021, Zhu et al., 2023)
- Krum (Blanchard et al., 2017; Chen et al., 2018; El El Mhamdi et al., 2018)
- No-regret (Zhu et al., 2021; Hopkins et al., 2020, Zhu et al., 2023)
- GAN (Zhu et al., 2022; Gao et al., 2020, Zhu et al., 2023)
- **...**

Existing Byzantine-tolerant aggregation methods

Developed for Euclidean parameter space, does not apply under mixture

Robust alternative of mean such as:

- Coordinate-wise median (Yin et al., 2018)
- Geometric median (Lai et al., 2016; Steinhardt, 2019)
- Trimmed mean (Yin et al., 2018)
- Median of means (Lugosi and Mendelson, 2019)
- Filtering (Diaklnikolas et al., 2017, 2019; Steinhardt et al., 2017; Zhu et al., 2021, Zhu et al., 2023)
- Krum (Blanchard et al., 2017; Chen et al., 2018; El El Mhamdi et al., 2018)
- No-regret (Zhu et al., 2021; Hopkins et al., 2020, Zhu et al., 2023)
- GAN (Zhu et al., 2022; Gao et al., 2020, Zhu et al., 2023)
- **...**

Existing Byzantine-tolerant aggregation methods

Developed for Euclidean parameter space, does not apply under mixture

Robust alternative of mean such as:

- Coordinate-wise median (Yin et al., 2018)
- Geometric median (Lai et al., 2016; Steinhardt, 2019)
- We consider Byzantine-tolerant distributed learning of finite mixture models

- Trimmed mean (Yin et al., 2018)
- Median of means (Lugosi and Mendelson, 2019)
- Filtering (Diaklnikolas et al., 2017, 2019; Steinhardt et al., 2017; Zhu et al., 2021, Zhu et al., 2023)
- Krum (Blanchard et al., 2017; Chen et al., 2018; El El Mhamdi et al., 2018)
- No-regret (Zhu et al., 2021; Hopkins et al., 2020, Zhu et al., 2023)
- GAN (Zhu et al., 2022; Gao et al., 2020, Zhu et al., 2023)
- **...**

Our method at a glance

We consider the majority of the machines are failure-free, $|\mathbb{B}| = \alpha m$ with $\alpha < 1/2$

Our method at a glance

We consider the majority of the machines are failure-free, $|\mathbb{B}| = \alpha m$ with $\alpha < 1/2$

Step 1

Use distance based method to filter out "bad" estimators

Our method at a glance

We consider the majority of the machines are failure-free, $|\mathbb{B}| = \alpha m$ with $\alpha < 1/2$

Step 1

Use distance based method to filter out "bad" estimators

Step 2

Aggregate the remaining use the reduction method introduced earlier in this talk

Parameter space \mathbb{G}_K

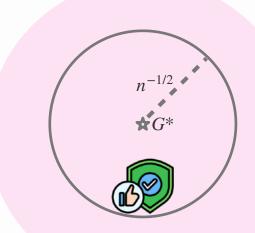
Intuition for our method

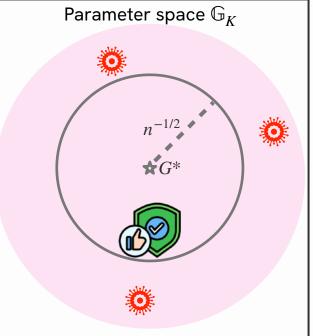
Parameter space \mathbb{G}_K

Intuition for our method

Parameter space \mathbb{G}_K

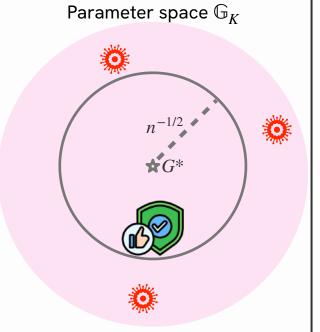
Intuition for our method





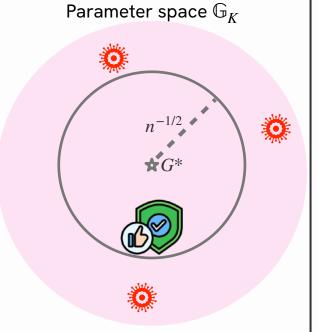
The majority of failure free local estimators are within $O(n^{-1/2})$ distance from G^* in L^2

• As both $G,G' \to G^*$, we have $nL^2(G,G') \approx \sqrt{n}(G-G')^\top H^* \sqrt{n}(G-G')$

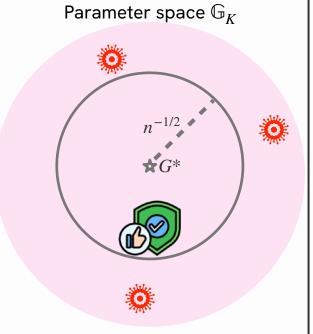


The majority of failure free local estimators are within $O(n^{-1/2})$ distance from G^* in L^2

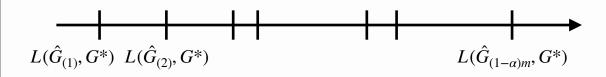
• As both $G, G' \to G^*$, we have Asymp. generalized χ^2 $nL^2(G, G') \approx \sqrt{n(G-G')^{\mathsf{T}}}H^*\sqrt{n}(G-G')$

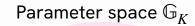


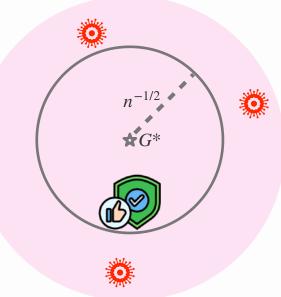
- As both $G,G'\to G^*$, we have Asymp. generalized χ^2 $nL^2(G,G')\approx \sqrt{n}(G-G')^{\mathsf{T}}H^*\sqrt{n}(G-G')$
- For failure-free machine estimates



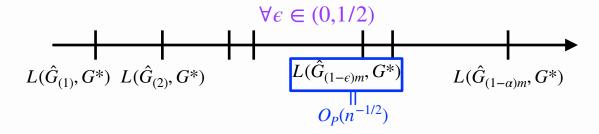
- As both $G, G' \to G^*$, we have Asymp. generalized χ^2 $nL^2(G,G') \approx \sqrt{n}(G-G')^{\mathsf{T}}H^*\sqrt{n}(G-G')$
- For failure-free machine estimates

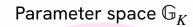


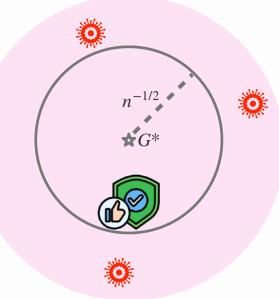




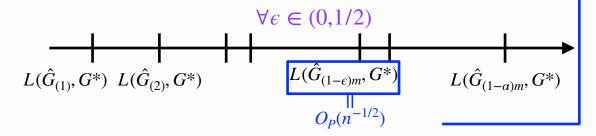
- As both $G, G' \to G^*$, we have Asymp. generalized χ^2 $nL^2(G,G') \approx \sqrt{n}(G-G')^{\mathsf{T}}H^*\sqrt{n}(G-G')$
- For failure-free machine estimates

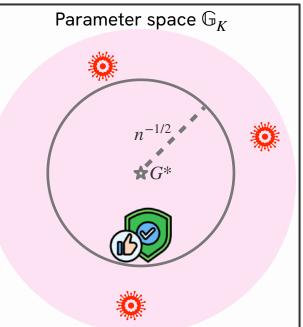






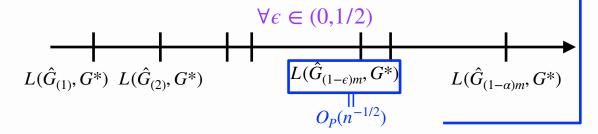
- As both $G, G' \to G^*$, we have Asymp. generalized χ^2 $nL^2(G, G') \approx \sqrt{n}(G G')^{\mathsf{T}} H^* \sqrt{n}(G G')$
- For failure-free machine estimates



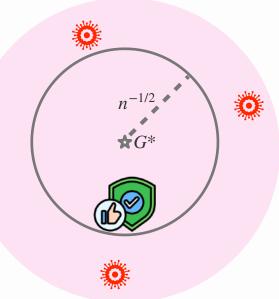


The majority of failure free local estimators are within $O(n^{-1/2})$ distance from G^* in L^2

- As both $G, G' \to G^*$, we have Asymp. generalized χ^2 $nL^2(G, G') \approx \sqrt{n}(G G')^{\mathsf{T}} H^* \sqrt{n}(G G')$
- For failure-free machine estimates



Parameter space \mathbb{G}_K

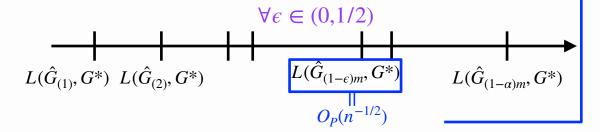


As
$$n, \rho_n \to \infty$$

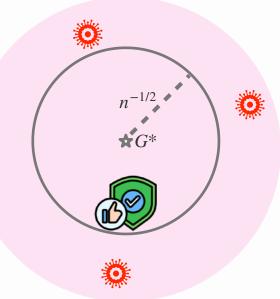
$$P(L(\hat{G}_i, G^*) \ge \rho_n n^{-1/2}) = O(\rho_n^{-8})$$

The majority of failure free local estimators are within $O(n^{-1/2})$ distance from G^* in L^2

- As both $G, G' \to G^*$, we have Asymp. generalized χ^2 $nL^2(G, G') \approx \sqrt{n}(G G')^{\mathsf{T}} H^* \sqrt{n}(G G')$
- For failure-free machine estimates



Parameter space \mathbb{G}_K



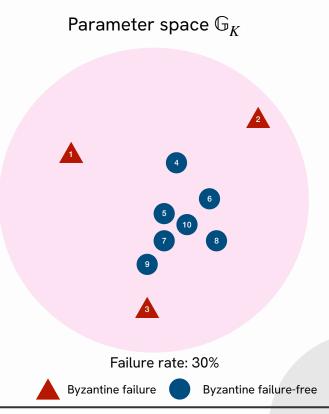
As
$$n, \rho_n \to \infty$$

$$P(L(\hat{G}_i, G^*) \ge \rho_n n^{-1/2}) = O(\rho_n^{-8})$$

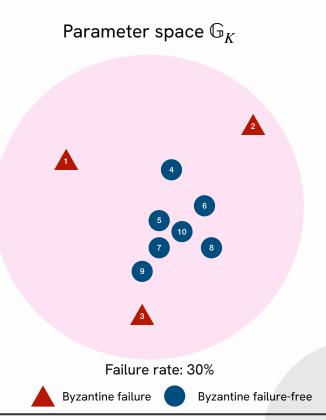
A slightly inflated ball of radius $O(\rho_n n^{-1/2})$ around a good initial estimate contain almost all of the failure-free local estimates

• We pick **Center of attention (COAT)** as the initial estimate

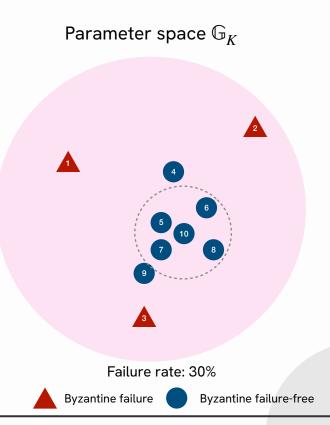
• We pick Center of attention (COAT) as the initial estimate



- We pick Center of attention (COAT) as the initial estimate
 - The centre of the smallest ball that contains 50% of all local estimates: \hat{G}^{COAT}
 - We denote the corresponding radius as r^{COAT}



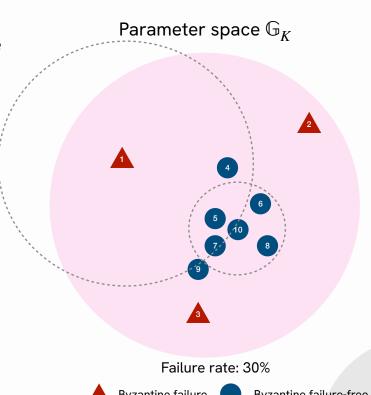
- We pick Center of attention (COAT) as the initial estimate
 - The centre of the smallest ball that contains 50% of all local estimates: \hat{G}^{COAT}
 - We denote the corresponding radius as r^{COAT}



We pick Center of attention (COAT) as the initial estimate

 The centre of the smallest ball that contains 50% of all local estimates: \hat{G}^{COAT}

• We denote the corresponding radius as r^{COAT}



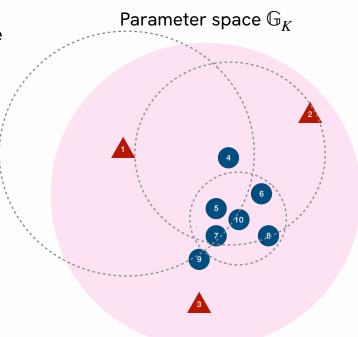
Byzantine failure

Byzantine failure-free

• We pick Center of attention (COAT) as the initial estimate

• The centre of the smallest ball that contains 50% of all local estimates: \hat{G}^{COAT}

• We denote the corresponding radius as r^{COAT}

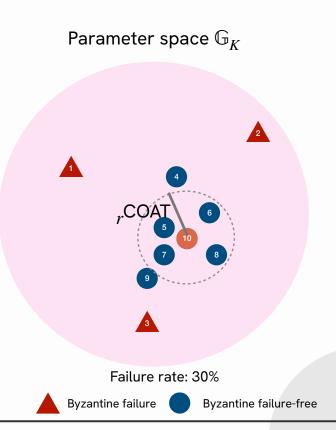


Failure rate: 30%

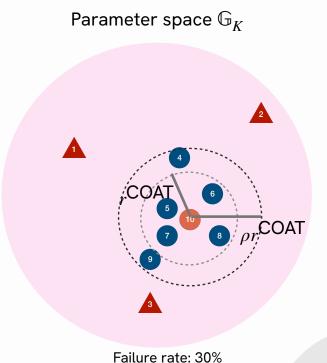
Byzantine failure

Byzantine failure-free

- We pick Center of attention (COAT) as the initial estimate
 - The centre of the smallest ball that contains 50% of all local estimates: \hat{G}^{COAT}
 - We denote the corresponding radius as r^{COAT}

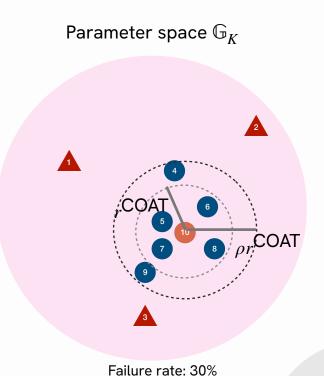


- We pick Center of attention (COAT) as the initial estimate
 - The centre of the smallest ball that contains 50% of all local estimates: \hat{G}^{COAT}
 - We denote the corresponding radius as r^{COAT}
- $\blacksquare \ \operatorname{Select} \, \mathbb{S}_{\boldsymbol{\rho}} = \{i : L(\hat{G}^{\mathsf{COAT}}, \, \widetilde{\boldsymbol{G}}_i) \leq \boldsymbol{\rho} r^{\mathsf{COAT}} \}$



Byzantine failure Byzantine failure-free

- We pick Center of attention (COAT) as the initial estimate
 - The centre of the smallest ball that contains 50% of all local estimates: \hat{G}^{COAT}
 - We denote the corresponding radius as r^{COAT}
- Select $\mathbb{S}_{\rho} = \{i : L(\hat{G}^{COAT}, \widetilde{G}_i) \leq \rho r^{COAT}\}$
- \blacksquare Aggregation all local estimates in \mathbb{S}_{ρ}
- $\rho = 1:50\%$ of local estimates are aggregated
- $\rho > 1$: more than 50% local estimates are aggregated



Byzantine failure

Byzantine failure-free

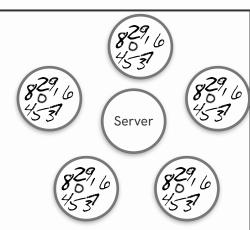
• We establish the theoretical results under some regularity conditions

- We establish the theoretical results under some regularity conditions
- Properties of the initial estimate
 - $_{\circ}$ $L(\hat{G}^{COAT}, G^*) = O_P(n^{-1/2})$ (mixture density)
 - \circ When strongly identifiable: $\|\hat{G}^{\text{COAT}} G^*\| = O_P(n^{-1/2})$ (mixing distribution as vector)

- We establish the theoretical results under some regularity conditions
- Properties of the initial estimate
 - \circ $L(\hat{G}^{COAT}, G^*) = O_P(n^{-1/2})$ (mixture density)
 - When strongly identifiable: $\|\hat{G}^{COAT} G^*\| = O_P(n^{-1/2})$ (mixing distribution as vector)
- Properties of DFMR(ρ)
 - $\text{When } \rho = \Omega(m^{1/14+\delta}) \text{ for any } \delta > 0, \, n \geq m, \text{ and strongly identifiable,} \\ \|\hat{G}^{\mathsf{DFMR}} G^*\| = O_P(N^{-1/2} + \widetilde{\alpha}_m \rho n^{-1/2}) \text{ where } \widetilde{\alpha}_m \text{ the proportion of failure estimates } \\ \text{within } 2\rho n^{-1/2} \text{ distance from } G^*$
 - o If $P(L(\xi_i, G^*) \le r) = O(r^3)$ as $r \to 0$, we have $\hat{G}^{DFMR} = \hat{G}^{oracle} + o_P(N^{-1/2})$

• Extract image features from pre-trained CNN in d=50, m=50

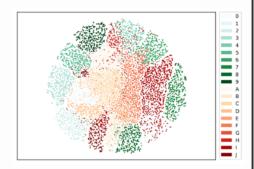
• Extract image features from pre-trained CNN in d=50, m=50



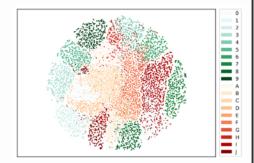
- Extract image features from pre-trained CNN in d = 50, m = 50
- Byzantine failures: replace digits features with letter features on failure machines
- Each machine fit a K = 10 Gaussian mixture

- Extract image features from pre-trained CNN in d=50, m=50
- Byzantine failures: replace digits features with letter features on failure machines
- Each machine fit a K = 10 Gaussian mixture

- Extract image features from pre-trained CNN in d=50, m=50
- Byzantine failures: replace digits features with letter features on failure machines
- Each machine fit a K = 10 Gaussian mixture

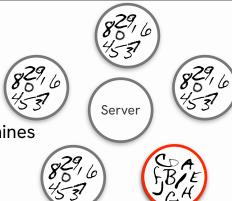


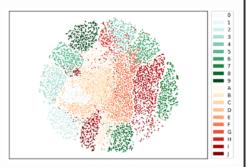
- Extract image features from pre-trained CNN in d=50, m=50
- Byzantine failures: replace digits features with letter features on failure machines
- Each machine fit a K = 10 Gaussian mixture
- Clustering performance: (the higher the better)



- Extract image features from pre-trained CNN in d=50, m=50
- Byzantine failures: replace digits features with letter features on failure machines
- Each machine fit a K = 10 Gaussian mixture
- Clustering performance: (the higher the better)

α	Oracle	$\mathrm{DFMR}(\rho)$	DFMR(1)	Trim	COAT	Vanilla
0.0	0.9195 (0.0014)	0.9195 (0.0014)	0.9186 (0.0018)	0.9034 (0.0116)	0.8896 (0.0108)	0.9195 (0.0014)
0.1	0.9193 (0.0015)	0.9194 (0.0014)	0.9185 (0.0018)	0.9035 (0.0118)	0.8898 (0.0106)	0.9043 (0.0050)
0.2	0.9192 (0.0015)	0.9194 (0.0013)	0.9186 (0.0020)	0.9042 (0.0112)	0.8898 (0.0106)	0.9046 (0.0044)
0.3	0.9189 (0.0017)	0.9194 (0.0015)	0.9186 (0.0018)	0.9040 (0.0107)	0.8898 (0.0104)	0.9041 (0.0046)
0.4	0.9189 (0.0017)	0.9195 (0.0014)	0.9186 (0.0018)	0.9037 (0.0117)	0.8892 (0.0110)	0.9042 (0.0049)

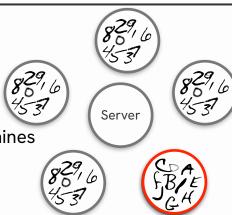


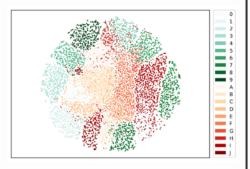


- Extract image features from pre-trained CNN in d=50, m=50
- Byzantine failures: replace digits features with letter features on failure machines
- Each machine fit a K = 10 Gaussian mixture
- Clustering performance: (the higher the better)

Barrio et al. (2019)	Single machine	Aggregate all
----------------------	----------------	---------------

α	Oracle	$DFMR(\rho)$	DFMR(1)	Trim	COAT	Vanilla	
0.0	0.9195 (0.0014)	0.9195 (0.0014)	0.9186 (0.0018)	0.9034 (0.0116)	0.8896 (0.0108)	0.9195 (0.0014)	
0.1	0.9193 (0.0015)	0.9194 (0.0014)	0.9185 (0.0018)	0.9035 (0.0118)	0.8898 (0.0106)	0.9043 (0.0050)	
0.2	0.9192 (0.0015)	0.9194 (0.0013)	0.9186 (0.0020)	0.9042 (0.0112)	0.8898 (0.0106)	0.9046 (0.0044)	
0.3	0.9189 (0.0017)	0.9194 (0.0015)	0.9186 (0.0018)	0.9040 (0.0107)	0.8898 (0.0104)	0.9041 (0.0046)	
0.4	0.9189 (0.0017)	0.9195 (0.0014)	0.9186 (0.0018)	0.9037 (0.0117)	0.8892 (0.0110)	0.9042 (0.0049)	





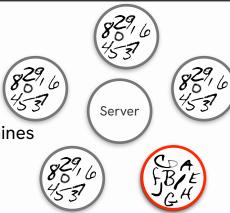
- Extract image features from pre-trained CNN in d=50, m=50
- Byzantine failures: replace digits features with letter features on failure machines

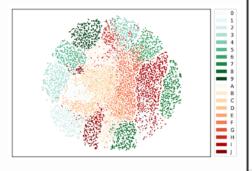
Barrio et al. (2019) Single machine Aggregate all

- Each machine fit a K = 10 Gaussian mixture
- Clustering performance: (the higher the better)

Our method

α	Oracle	$DFMR(\rho)$	DFMR(1)		Trim		COAT		Vanilla
0.0	0.9195 (0.0014)	0.9195 (0.0014)	0.9186 (0.0018)	0	.9034 (0.011	6) 0.	.8896 (0.010	8) 0	.9195 (0.0014)
0.1	0.9193 (0.0015)	0.9194 (0.0014)	0.9185 (0.0018)	0	.9035 (0.011	8) 0.	.8898 (0.010	6) 0	.9043 (0.0050)
0.2	0.9192 (0.0015)	0.9194 (0.0013)	0.9186 (0.0020)	0	.9042 (0.011	2) 0.	.8898 (0.010	6) 0	.9046 (0.0044)
0.3	0.9189 (0.0017)	0.9194 (0.0015)	0.9186 (0.0018)	0	.9040 (0.010	7) 0.	.8898 (0.010	4) 0	.9041 (0.0046)
0.4	0.9189 (0.0017)	0.9195 (0.0014)	0.9186 (0.0018)	0	.9037 (0.011	7) 0.	.8892 (0.011	0) 0	.9042 (0.0049)





- Extract image features from pre-trained CNN in d=50, m=50
- Byzantine failures: replace digits features with letter features on failure machines

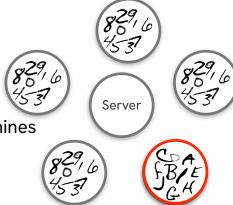
Barrio et al. (2019) Single machine Aggregate all

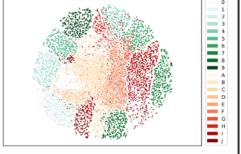
- Each machine fit a K = 10 Gaussian mixture
- Clustering performance: (the higher the better)

Our method

					•					
α	Oracle	$DFMR(\rho)$	DFMR(1)		Trim		COAT		Vanilla	
0.0	0.9195 (0.0014)	0.9195 (0.0014)	0.9186 (0.0018)	0.	9034 (0.011	6) 0	.8896 (0.010	8) 0	.9195 (0.001	4)
0.1	0.9193 (0.0015)	0.9194 (0.0014)	0.9185 (0.0018)	0.	9035 (0.011	8) 0	.8898 (0.010	6) 0	.9043 (0.005	(0)
0.2	0.9192 (0.0015)	0.9194 (0.0013)	0.9186 (0.0020)	0.	9042 (0.011	2) 0	.8898 (0.010	6) 0	.9046 (0.004	4)
0.3	0.9189 (0.0017)	0.9194 (0.0015)	0.9186 (0.0018)	0.	9040 (0.010	7) 0	.8898 (0.010	4) 0	.9041 (0.004	6)
0.4	0.9189 (0.0017)	0.9195 (0.0014)	0.9186 (0.0018)	0.	9037 (0.011	7) 0	.8892 (0.011	0) 0	.9042 (0.004	9)

• DFMR(1): select 50% local estimates for aggregation; DFMR(ρ) selects > 50%





- Extract image features from pre-trained CNN in d=50, m=50
- Byzantine failures: replace digits features with letter features on failure machines

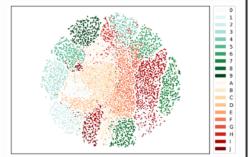
Barrio et al. (2019) Single machine Aggregate all

- Each machine fit a K = 10 Gaussian mixture
- Clustering performance: (the higher the better)

Our method

					. , ,			55 5		
α	Oracle	$DFMR(\rho)$	DFMR(1)		Trim		COAT		Vanilla	
0.0	0.9195 (0.0014)	0.9195 (0.0014)	0.9186 (0.0018)	0.9	9034 (0.011	6) 0	.8896 (0.010	8) 0	.9195 (0.0014))
0.1	0.9193 (0.0015)	0.9194 (0.0014)	0.9185 (0.0018)	0.9	9035 (0.011	8) 0	.8898 (0.010	6) 0	.9043 (0.0050))
0.2	0.9192 (0.0015)	0.9194 (0.0013)	0.9186 (0.0020)	0.9	9042 (0.011	2) 0	.8898 (0.010	6) 0	.9046 (0.0044))
0.3	0.9189 (0.0017)	0.9194 (0.0015)	0.9186 (0.0018)	0.9	9040 (0.010	7) 0	.8898 (0.010	4) 0	.9041 (0.0046))
0.4	0.9189 (0.0017)	0.9195 (0.0014)	0.9186 (0.0018)	0.9	9037 (0.011	7) 0	.8892 (0.011	0) 0	.9042 (0.0049))

- DFMR(1): select 50% local estimates for aggregation; DFMR(ρ) selects > 50%
- DFMR(ρ) with $\rho \in [1.35,3]$ is **as good as** the Oracle; DFMR(1) is comparable



Summary

Paper link

- Distributed learning of finite mixture is difficult due to the well-known "label switching problem"
- The above issue makes existing aggregation approaches and their Byzantine-tolerant inapplicable
- We design the first Byzantine-tolerant aggregation method for distributed learning of finite mixture models
- We demonstrate that DFMR is both computationally efficient and statistically sound.

Summary

- Paper link

 Aper link
- Distributed learning of finite mixture is difficult due to the well-known "label switching problem"
- The above issue makes existing aggregation approaches and their Byzantine-tolerant inapplicable
- We design the first Byzantine-tolerant aggregation method for distributed learning of finite mixture models
- We demonstrate that DFMR is both computationally efficient and statistically sound.

