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Finite mixture can be used to approximate density functions with various shapes

Credit: Geoffrey McLachlan and David Peel — Finite Mixture Models
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● Latent variable representation (  not observed)Z

{X |Z = k ∼ f (x; θk),
P(Z = k) = wk, k ∈ [K ] = 1,…, K

● Marginal of  is a mixture of order  X K
● Posterior distribution of the latent variable

P(Z = k |X = x) ∝ wk f (x; θk)
● Clustering(maximize posterior)

κ(x; G) = argmaxj∈[K ]wj f (x; θj)

How to estimate  from data?G
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Estimator
: Local sample size 
: Number of machines 
: Total sample size

n
m
N
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Parameter space   
(Discrete distributions with  support points)

𝔾
K No longer in the 

parameter space!
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Ḡ =
m

∑
i=1

λiĜi
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ρ(Ḡ, G)

• : composite transportation divergence (for efficient computation)ρ( ⋅ , ⋅ )
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ḠR = arginfG∈𝔾K
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λiĜi

Initialization

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR.

Space of ℱ Demo: 
estimate 2-
component 
mixture with 3 
machines

Paper link

*The asymptotic results are represented after some ordering of the G into vectors



• Zhang and Chen (JMLR 2022): reduction approach
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ρ(Ḡ, G)

• : composite transportation divergence (for efficient computation)ρ( ⋅ , ⋅ )

•  is  when ;  when ḠR OP(N−1/2) n ≥ m N(ḠR − G*) → N(0,I−1(G*))
m = o(n)

• An efficient MM algorithm: -means clustering on K ℱ

Our reduction based aggregation

11

Parameter space   
(  support points)

𝔾
K

Smallest composite  
transportation divergence
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The server receives: 

G̃j = {Ĝj,  when j ∉ 𝔹
ξi,  when j ∈ 𝔹

A subset of these machines (Byzantine machines) may transmit arbitrary or malicious 
messages to the central machine. 

Byzantine machine

Arbitrary mixing distribution
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• …

Developed for Euclidean parameter space, does not apply under mixture

We consider Byzantine-tolerant 
distributed learning of finite 
mixture models
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Our method at a glance

15

Step 1
Use distance based 
method to filter 
out “bad” estimators

Step 2
Aggregate the remaining 
use the reduction 
method introduced 
earlier in this talk

We consider the majority of the machines are failure-free,  with |𝔹 | = αm α < 1/2
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∀ϵ ∈ (0,1/2)

OP(n−1/2)

=
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A slightly inflated ball of radius 
 around a good initial 

estimate contain almost all of the 
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• We denote the corresponding radius as rCOAT
2

4
1

3

10
5

7

6

8

9

Byzantine failure Byzantine failure-free

10

Failure rate: 30%

Parameter space   𝔾K

rCOAT



Proposed method: distance filtered mixture reduction

17

• We pick Center of attention (COAT) as the initial estimate

• The centre of the smallest ball that contains 50% of all 
local estimates: ĜCOAT
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• The centre of the smallest ball that contains 50% of all 
local estimates: ĜCOAT

• We denote the corresponding radius as rCOAT

• Select 𝕊ρ = {i : L(ĜCOAT, G̃ i) ≤ ρrCOAT}

• Aggregation all local estimates in 𝕊ρ

• : 50% of local estimates are aggregatedρ = 1

• : more than 50% local estimates are aggregatedρ > 1
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Statistical guarantees

● We establish the theoretical results under some regularity conditions

● Properties of the initial estimate

○  (mixture density)

○ When strongly identifiable:  (mixing distribution as vector)

L(ĜCOAT, G*) = OP(n−1/2)

∥ĜCOAT − G*∥ = OP(n−1/2)
● Properties of DFMR( )

○ When  for any , , and strongly identifiable, 

 where  the proportion of failure estimates 

within  distance from 

○ If  as , we have 

ρ
ρ = Ω(m1/14+δ) δ > 0 n ≥ m

∥ĜDFMR − G*∥ = OP(N−1/2 + α̃mρn−1/2) α̃m

2ρn−1/2 G*
P(L(ξi, G*) ≤ r) = O(r3) r → 0 ĜDFMR = Ĝoracle + oP(N−1/2)
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• Extract image features from pre-trained CNN in , d = 50 m = 50

• Byzantine failures: replace digits features with letter features on failure machines

• Each machine fit a  Gaussian mixtureK = 10

• Clustering performance: (the higher the better)

• DFMR(1): select 50% local estimates for aggregation; DFMR( ) selects > 50%ρ

• DFMR( ) with  is as good as the Oracle; DFMR(1) is comparableρ ρ ∈ [1.35,3]

Server

Barrio et al. (2019) Single machine Aggregate allOur method



Summary

• Distributed learning of finite mixture is difficult due to the 
well-known “label switching problem”


• The above issue makes existing aggregation approaches 
and their Byzantine-tolerant inapplicable


• We design the first Byzantine-tolerant aggregation method 
for distributed learning of finite mixture models


• We demonstrate that DFMR is both computationally efficient 
and statistically sound.
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