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e e.g., finite Gaussian mixture
F = {pO; 1, %) = 272" exp{ = (x = )= (x — )12} : p € RY, T > 0}
e Parameter space
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Finite mixture can be used to approximate density functions with various shapes
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Finite mixture for model-based clustering

e Latent variable representation (Z not observed)

X|Z =k ~ f(x;0),
{P(sz) —w.kel[K]=1,..K

e Marginal of X is a mixture of order K

e Posterior distribution of the latent variable ‘-
P(Z=k|X =x) xw,f(x;6,) T

e Clustering(maximize posterior) How to estimate G from data?

K(x;G) = argmaxje[K]w-f(x; 0.
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Existing Byzantine-tolerant aggregation methods

Robust alternative of mean such as:

Coordinate-wise median (Yin et al., 2018)

Geometric median (Lai et al., 2016; Steinhardt, 2019)

Trimmed mean (Yin et al., 2018)

Median of means (Lugosi and Mendelson, 2019)

Filtering (Diaklnikolas et al., 2017, 2019, Steinhardt et al., 2017; Zhu et al., 2021, Zhu et al., 2023)
Krum (Blanchard et al., 2017; Chen et al., 2018; El El Mhamdi et al., 2018)

No-regret (Zhu et al., 2021, Hopkins et al., 2020, Zhu et al., 2023)

GAN (Zhu et al., 2022; Gao et al., 2020, Zhu et al., 2023)
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Robust alternative of mean such as:
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O(pnn_”z) around a good initial
estimate contain almost all of the
failure-free local estimates
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Proposed method: distance filtered mixture reduction

Parameter space Gy

We pick Center of attention (COAT) as the initial estimate

= The centre of the smallest ball that contains 50% of all
local estimates: GCOAT
A

» We denote the corresponding radius as yCOAT A

Select S, = {i : L(GCOAT, G) < prCOAT)

Aggregation all local estimates in Sp

» p = 1:50% of local estimates are aggregated

= p > 1: more than 50% local estimates are aggregated

Failure rate: 30%

A Byzantine failure . Byzantine failure-free
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e We establish the theoretical results under some regularity conditions

e Properties of the initial estimate
L(GCOAT, G*) = Op(n_”z) (mixture density)
o When strongly identifiable: ||GCOAT — G*|| = 0p(n~'?) (mixing distribution as vector)
e Properties of DFMR(p)
o Whenp = Q(m"1**%) for any § > 0, n > m, and strongly identifiable,
||GDFMR — G*|| = Op(N"? + @&, pn=""2) where @, the proportion of failure estimates
within 2pn =2 distance from G*
o HP(L(E, G*) <) = 0@ as r — 0, we have GPFMR = Goracle |, (y-1/2)
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Summary 0., 2
[=];

Distributed learning of finite mixture is difficult due to the
well-known “label switching problem”

The above issue makes existing aggregation approaches
and their Byzantine-tolerant inapplicable

We design the first Byzantine-tolerant aggregation method
for distributed learning of finite mixture models

We demonstrate that DFMR is both computationally efficient
and statistically sound.
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