
Byzantine-tolerant distributed
learning of finite mixture models

1

Qiong Zhang

RUC

Yan Shuo Tan

NUS

Jiahua Chen

UBC

Bike share

2

Example credit: Trevor Campbell

Bike share

2

Need to rebalance bikes-where do customers leave them?

Example credit: Trevor Campbell

Bike share

2

Need to rebalance bikes-where do customers leave them?

Example credit: Trevor Campbell

Bike share

2

Need to rebalance bikes-where do customers leave them?

Example credit: Trevor Campbell

Density estimation
Multi-modal

Bike share

2

Need to rebalance bikes-where do customers leave them?

Example credit: Trevor Campbell

Density estimation
Multi-modal

Human genetic clustering

3

Human genetic clustering

3

Do you want to know your ancestry from your gene?

Human genetic clustering

3

Do you want to know your ancestry from your gene?

SNP1 SNP2 SNPN

Human genetic clustering

3

Do you want to know your ancestry from your gene?

SNP1 SNP2 SNPN
PCA1

PCA2

PCA3

Human genetic clustering

3

Do you want to know your ancestry from your gene?

SNP1 SNP2 SNPN
PCA1

PCA2

PCA3

PCA1

PCA2

PCA3

Finite mixture model

4

A family of distributions

Finite mixture model

● Let be a parametric distribution family
● The finite mixture model of with order has its density function:

ℱ = {𝑓(𝑥; 𝜃):𝜃 ∈ Θ}
ℱ 𝐾

4

A family of distributions

fG(x) := ∫ f (x; θ) dG(θ) =
K

∑
k=1

wk f (x; θk)

Finite mixture model

● Let be a parametric distribution family
● The finite mixture model of with order has its density function:

ℱ = {𝑓(𝑥; 𝜃):𝜃 ∈ Θ}
ℱ 𝐾

4

A family of distributions

fG(x) := ∫ f (x; θ) dG(θ) =
K

∑
k=1

wk f (x; θk)
Mixing distribution

G = ∑
k

wkδθk

Finite mixture model

● Let be a parametric distribution family
● The finite mixture model of with order has its density function:

ℱ = {𝑓(𝑥; 𝜃):𝜃 ∈ Θ}
ℱ 𝐾

4

A family of distributions

fG(x) := ∫ f (x; θ) dG(θ) =
K

∑
k=1

wk f (x; θk)
Mixing distribution Subpopulation parameter

G = ∑
k

wkδθk

Mixing weight

Finite mixture model

● Let be a parametric distribution family
● The finite mixture model of with order has its density function:

ℱ = {𝑓(𝑥; 𝜃):𝜃 ∈ Θ}
ℱ 𝐾

4

A family of distributions

fG(x) := ∫ f (x; θ) dG(θ) =
K

∑
k=1

wk f (x; θk)
Mixing distribution Subpopulation parameter

Order (known)
G = ∑

k

wkδθk

Mixing weight

Finite mixture model

● Let be a parametric distribution family
● The finite mixture model of with order has its density function:

ℱ = {𝑓(𝑥; 𝜃):𝜃 ∈ Θ}
ℱ 𝐾

4

A family of distributions

fG(x) := ∫ f (x; θ) dG(θ) =
K

∑
k=1

wk f (x; θk)
Mixing distribution Subpopulation parameter

Order (known)
G = ∑

k

wkδθk

Mixing weight

● e.g., finite Gaussian mixture
ℱ = {ϕ(x; μ, Σ) = |2πΣ |−1/2 exp{ − (x − μ)⊤Σ−1(x − μ)/2} : μ ∈ ℝd, Σ > 0}

Finite mixture model

● Let be a parametric distribution family
● The finite mixture model of with order has its density function:

ℱ = {𝑓(𝑥; 𝜃):𝜃 ∈ Θ}
ℱ 𝐾

4

A family of distributions

fG(x) := ∫ f (x; θ) dG(θ) =
K

∑
k=1

wk f (x; θk)
Mixing distribution Subpopulation parameter

Order (known)
G = ∑

k

wkδθk

Mixing weight

● e.g., finite Gaussian mixture
ℱ = {ϕ(x; μ, Σ) = |2πΣ |−1/2 exp{ − (x − μ)⊤Σ−1(x − μ)/2} : μ ∈ ℝd, Σ > 0}

● Parameter space

𝔾K = {G =
K

∑
k=1

wkδθk
: θk ∈ Θ, wk ∈ (0,1), ∑

k

wk = 1}

Finite mixture for density estimation

5

Finite mixture for density estimation

5

Finite mixture can be used to approximate density functions with various shapes

Credit: Geoffrey McLachlan and David Peel — Finite Mixture Models

Finite mixture for model-based clustering

6

Finite mixture for model-based clustering

6

● Latent variable representation (not observed)Z

{X |Z = k ∼ f (x; θk),
P(Z = k) = wk, k ∈ [K] = 1,…, K

Finite mixture for model-based clustering

6

● Latent variable representation (not observed)Z

{X |Z = k ∼ f (x; θk),
P(Z = k) = wk, k ∈ [K] = 1,…, K

● Marginal of is a mixture of order X K

Finite mixture for model-based clustering

6

● Latent variable representation (not observed)Z

{X |Z = k ∼ f (x; θk),
P(Z = k) = wk, k ∈ [K] = 1,…, K

● Marginal of is a mixture of order X K
● Posterior distribution of the latent variable

P(Z = k |X = x) ∝ wk f (x; θk)

Finite mixture for model-based clustering

6

● Latent variable representation (not observed)Z

{X |Z = k ∼ f (x; θk),
P(Z = k) = wk, k ∈ [K] = 1,…, K

● Marginal of is a mixture of order X K
● Posterior distribution of the latent variable

P(Z = k |X = x) ∝ wk f (x; θk)
● Clustering(maximize posterior)

κ(x; G) = argmaxj∈[K]wj f (x; θj)

Finite mixture for model-based clustering

6

● Latent variable representation (not observed)Z

{X |Z = k ∼ f (x; θk),
P(Z = k) = wk, k ∈ [K] = 1,…, K

● Marginal of is a mixture of order X K
● Posterior distribution of the latent variable

P(Z = k |X = x) ∝ wk f (x; θk)
● Clustering(maximize posterior)

κ(x; G) = argmaxj∈[K]wj f (x; θj)

How to estimate from data?G

Distributed data storage & split-and-conquer

7

Distributed data storage & split-and-conquer

7

Local inference

Local machine

Distributed data storage & split-and-conquer

7

Local inference

Transm
iss

ion

Local machine Central machine

Distributed data storage & split-and-conquer

7

Local inference

Transm
iss

ion

Local machine Central machine

Aggregation

Distributed data storage & split-and-conquer

7

 Privacy gain

Local inference

Transm
iss

ion

Local machine Central machine

Aggregation

Distributed data storage & split-and-conquer

7

 Privacy gain

 Low transmission cost

Local inference

Transm
iss

ion

Local machine Central machine

Aggregation

SC learning under Euclidean parameter space

8

Local estimates

Aggregation

ℝdEuclidean parameter space

SC learning under Euclidean parameter space

8

𝒳2

𝒳3

𝒳1

𝒳m

Local datasets

Local estimates

Aggregation

ℝdEuclidean parameter space

SC learning under Euclidean parameter space

8

λ1 = n /N

λ2 = n /N

λ3 = n /N

λm = n /N

𝒳2

𝒳3

𝒳1

𝒳m

Local datasets

IID observations from f (x; θ*)

Local estimates

Aggregation

ℝdEuclidean parameter space

SC learning under Euclidean parameter space

8

̂θ1

̂θ2

̂θ3

̂θm

Local estimates
λ1 = n /N

λ2 = n /N

λ3 = n /N

λm = n /N

𝒳2

𝒳3

𝒳1

𝒳m

Local datasets

IID observations from f (x; θ*)

Local estimates

Aggregation

ℝdEuclidean parameter space

SC learning under Euclidean parameter space

8

 θ̄ =
m

∑
j=1

λj
̂θj

̂θ1

̂θ2

̂θ3

̂θm

Local estimates
λ1 = n /N

λ2 = n /N

λ3 = n /N

λm = n /N

𝒳2

𝒳3

𝒳1

𝒳m

Local datasets

IID observations from f (x; θ*)

Local estimates

Aggregation

ℝdEuclidean parameter space

Estimator

SC learning under Euclidean parameter space

8

 θ̄ =
m

∑
j=1

λj
̂θj

̂θ1

̂θ2

̂θ3

̂θm

Local estimates
λ1 = n /N

λ2 = n /N

λ3 = n /N

λm = n /N

𝒳2

𝒳3

𝒳1

𝒳m

Local datasets

IID observations from f (x; θ*)

Local estimates

Aggregation

ℝdEuclidean parameter space

Estimator
: Local sample size
: Number of machines
: Total sample size

n
m
N

Why finite mixture is special?

9

Parameter space is non-Euclidean

Why finite mixture is special?

9

Parameterization by a vector has non-identifiability issue

Parameter space is non-Euclidean

Why finite mixture is special?

9

Parameterization by a vector has non-identifiability issue

● Consider f (x; G) = 0.4f (x; − 1) + 0.6f (x; 1)

Parameter space is non-Euclidean

Why finite mixture is special?

9

Parameterization by a vector has non-identifiability issue

● Consider f (x; G) = 0.4f (x; − 1) + 0.6f (x; 1)

● Let and G1 = (0.4, − 1,0.6,1) G2 = (0.6,1,0.4, − 1)

Parameter space is non-Euclidean

Why finite mixture is special?

9

Parameterization by a vector has non-identifiability issue

● Consider f (x; G) = 0.4f (x; − 1) + 0.6f (x; 1)

● Let and G1 = (0.4, − 1,0.6,1) G2 = (0.6,1,0.4, − 1)

● Non-identifiable: but G1 ≠ G2 f (x; G1) = f (x; G2)

Parameter space is non-Euclidean

Why finite mixture is special?

9

Parameterization by a vector has non-identifiability issue

● Consider f (x; G) = 0.4f (x; − 1) + 0.6f (x; 1)

● Let and G1 = (0.4, − 1,0.6,1) G2 = (0.6,1,0.4, − 1)

● Non-identifiable: but G1 ≠ G2 f (x; G1) = f (x; G2)

● The mixing distribution as a distribution does not have this issueG

Parameter space is non-Euclidean

Why finite mixture is special?

9

Parameterization by a vector has non-identifiability issue

● Consider f (x; G) = 0.4f (x; − 1) + 0.6f (x; 1)

● Let and G1 = (0.4, − 1,0.6,1) G2 = (0.6,1,0.4, − 1)

● Non-identifiable: but G1 ≠ G2 f (x; G1) = f (x; G2)

● The mixing distribution as a distribution does not have this issueG

● 𝔾K = {G =
K

∑
k=1

wkδθk
: θk ∈ Θ, wk ∈ (0,1), ∑

k

wk = 1}

Parameter space is non-Euclidean

Why finite mixture is special?

9

Parameterization by a vector has non-identifiability issue

● Consider f (x; G) = 0.4f (x; − 1) + 0.6f (x; 1)

● Let and G1 = (0.4, − 1,0.6,1) G2 = (0.6,1,0.4, − 1)

● Non-identifiable: but G1 ≠ G2 f (x; G1) = f (x; G2)

● The mixing distribution as a distribution does not have this issueG

● 𝔾K = {G =
K

∑
k=1

wkδθk
: θk ∈ Θ, wk ∈ (0,1), ∑

k

wk = 1}
Parameter space: Discrete distribution with at most K support points

Parameter space is non-Euclidean

Why finite mixture is special?

10

Parameter space is non-Euclidean, conventional method does not apply

Why finite mixture is special?

10

Parameter space is non-Euclidean, conventional method does not apply

Parameter space
(Discrete distributions with support points)

𝔾
K

Why finite mixture is special?

10

Parameter space is non-Euclidean, conventional method does not apply

Parameter space
(Discrete distributions with support points)

𝔾
K

Ḡ =
m

∑
i=1

λiĜi

Why finite mixture is special?

10

Parameter space is non-Euclidean, conventional method does not apply

Parameter space
(Discrete distributions with support points)

𝔾
K

Ḡ =
m

∑
i=1

λiĜi

Why finite mixture is special?

10

Parameter space is non-Euclidean, conventional method does not apply

Parameter space
(Discrete distributions with support points)

𝔾
K No longer in the

parameter space!

Our reduction based aggregation

11

Parameter space
(support points)

𝔾
K

Ḡ =
m

∑
i=1

λiĜi

Paper link

• Zhang and Chen (JMLR 2022): reduction approach

ḠR = arginfG∈𝔾K
ρ(Ḡ, G)

Our reduction based aggregation

11

Parameter space
(support points)

𝔾
K

Ḡ =
m

∑
i=1

λiĜi

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR.

Paper link

• Zhang and Chen (JMLR 2022): reduction approach

ḠR = arginfG∈𝔾K
ρ(Ḡ, G)

• : composite transportation divergence (for efficient computation)ρ(⋅ , ⋅)

Our reduction based aggregation

11

Parameter space
(support points)

𝔾
K

Smallest composite
transportation divergence

Ḡ =
m

∑
i=1

λiĜi

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR.

Paper link

• Zhang and Chen (JMLR 2022): reduction approach

ḠR = arginfG∈𝔾K
ρ(Ḡ, G)

• : composite transportation divergence (for efficient computation)ρ(⋅ , ⋅)

• is when ; when ḠR OP(N−1/2) n ≥ m N(ḠR − G*) → N(0,I−1(G*))
m = o(n)

Our reduction based aggregation

11

Parameter space
(support points)

𝔾
K

Smallest composite
transportation divergence

Ḡ =
m

∑
i=1

λiĜi

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR.

Paper link

*The asymptotic results are represented after some ordering of the G into vectors

• Zhang and Chen (JMLR 2022): reduction approach

ḠR = arginfG∈𝔾K
ρ(Ḡ, G)

• : composite transportation divergence (for efficient computation)ρ(⋅ , ⋅)

• is when ; when ḠR OP(N−1/2) n ≥ m N(ḠR − G*) → N(0,I−1(G*))
m = o(n)

• An efficient MM algorithm: -means clustering on K ℱ

Our reduction based aggregation

11

Parameter space
(support points)

𝔾
K

Smallest composite
transportation divergence

Ḡ =
m

∑
i=1

λiĜi

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR.

Paper link

*The asymptotic results are represented after some ordering of the G into vectors

• Zhang and Chen (JMLR 2022): reduction approach

ḠR = arginfG∈𝔾K
ρ(Ḡ, G)

• : composite transportation divergence (for efficient computation)ρ(⋅ , ⋅)

• is when ; when ḠR OP(N−1/2) n ≥ m N(ḠR − G*) → N(0,I−1(G*))
m = o(n)

• An efficient MM algorithm: -means clustering on K ℱ

Our reduction based aggregation

11

Parameter space
(support points)

𝔾
K

Smallest composite
transportation divergence

Ḡ =
m

∑
i=1

λiĜi

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR.

Space of ℱ Demo:
estimate 2-
component
mixture with 3
machines

Paper link

*The asymptotic results are represented after some ordering of the G into vectors

• Zhang and Chen (JMLR 2022): reduction approach

ḠR = arginfG∈𝔾K
ρ(Ḡ, G)

• : composite transportation divergence (for efficient computation)ρ(⋅ , ⋅)

• is when ; when ḠR OP(N−1/2) n ≥ m N(ḠR − G*) → N(0,I−1(G*))
m = o(n)

• An efficient MM algorithm: -means clustering on K ℱ

Our reduction based aggregation

11

Parameter space
(support points)

𝔾
K

Smallest composite
transportation divergence

Ḡ =
m

∑
i=1

λiĜi

Initialization

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR.

Space of ℱ Demo:
estimate 2-
component
mixture with 3
machines

Paper link

*The asymptotic results are represented after some ordering of the G into vectors

• Zhang and Chen (JMLR 2022): reduction approach

ḠR = arginfG∈𝔾K
ρ(Ḡ, G)

• : composite transportation divergence (for efficient computation)ρ(⋅ , ⋅)

• is when ; when ḠR OP(N−1/2) n ≥ m N(ḠR − G*) → N(0,I−1(G*))
m = o(n)

• An efficient MM algorithm: -means clustering on K ℱ

Our reduction based aggregation

11

Parameter space
(support points)

𝔾
K

Smallest composite
transportation divergence

Ḡ =
m

∑
i=1

λiĜi

Initialization Majorization

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR.

Space of ℱ Demo:
estimate 2-
component
mixture with 3
machines

Paper link

*The asymptotic results are represented after some ordering of the G into vectors

• Zhang and Chen (JMLR 2022): reduction approach

ḠR = arginfG∈𝔾K
ρ(Ḡ, G)

• : composite transportation divergence (for efficient computation)ρ(⋅ , ⋅)

• is when ; when ḠR OP(N−1/2) n ≥ m N(ḠR − G*) → N(0,I−1(G*))
m = o(n)

• An efficient MM algorithm: -means clustering on K ℱ

Our reduction based aggregation

11

Parameter space
(support points)

𝔾
K

Smallest composite
transportation divergence

Ḡ =
m

∑
i=1

λiĜi

Initialization Majorization Minimization

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR.

Space of ℱ Demo:
estimate 2-
component
mixture with 3
machines

Paper link

*The asymptotic results are represented after some ordering of the G into vectors

• Zhang and Chen (JMLR 2022): reduction approach

ḠR = arginfG∈𝔾K
ρ(Ḡ, G)

• : composite transportation divergence (for efficient computation)ρ(⋅ , ⋅)

• is when ; when ḠR OP(N−1/2) n ≥ m N(ḠR − G*) → N(0,I−1(G*))
m = o(n)

• An efficient MM algorithm: -means clustering on K ℱ

Our reduction based aggregation

11

Parameter space
(support points)

𝔾
K

Smallest composite
transportation divergence

Ḡ =
m

∑
i=1

λiĜi

Initialization Majorization Minimization Majorization

Zhang, Q., & Chen, J. (2022). Distributed learning of finite Gaussian mixtures. JMLR.

Space of ℱ Demo:
estimate 2-
component
mixture with 3
machines

Paper link

*The asymptotic results are represented after some ordering of the G into vectors

What is Byzantine failure?

12

A subset of these machines (Byzantine machines) may transmit arbitrary or malicious
messages to the central machine.

What is Byzantine failure?

12

A subset of these machines (Byzantine machines) may transmit arbitrary or malicious
messages to the central machine.

Byzantine machine

What is Byzantine failure?

12

The server receives:

G̃j = {Ĝj, when j ∉ 𝔹
ξi, when j ∈ 𝔹

A subset of these machines (Byzantine machines) may transmit arbitrary or malicious
messages to the central machine.

Byzantine machine

Arbitrary mixing distribution

What is the consequence?

13

What is the consequence?

13

Space of ℱ

What is the consequence?

13

Space of ℱ

What is the consequence?

13

Space of ℱ

What is the consequence?

13

Space of ℱ

What is the consequence?

13

Distorted aggregation result

Space of ℱ

Existing Byzantine-tolerant aggregation methods

14

Robust alternative of mean such as:

• Coordinate-wise median (Yin et al., 2018)

• Geometric median (Lai et al., 2016; Steinhardt, 2019)

• Trimmed mean (Yin et al., 2018)

• Median of means (Lugosi and Mendelson, 2019)

• Filtering (Diaklnikolas et al., 2017, 2019; Steinhardt et al., 2017; Zhu et al., 2021, Zhu et al., 2023)

• Krum (Blanchard et al., 2017; Chen et al., 2018; El El Mhamdi et al., 2018)

• No-regret (Zhu et al., 2021; Hopkins et al., 2020, Zhu et al., 2023)

• GAN (Zhu et al., 2022; Gao et al., 2020, Zhu et al., 2023)

• …

Existing Byzantine-tolerant aggregation methods

14

Robust alternative of mean such as:

• Coordinate-wise median (Yin et al., 2018)

• Geometric median (Lai et al., 2016; Steinhardt, 2019)

• Trimmed mean (Yin et al., 2018)

• Median of means (Lugosi and Mendelson, 2019)

• Filtering (Diaklnikolas et al., 2017, 2019; Steinhardt et al., 2017; Zhu et al., 2021, Zhu et al., 2023)

• Krum (Blanchard et al., 2017; Chen et al., 2018; El El Mhamdi et al., 2018)

• No-regret (Zhu et al., 2021; Hopkins et al., 2020, Zhu et al., 2023)

• GAN (Zhu et al., 2022; Gao et al., 2020, Zhu et al., 2023)

• …

Developed for Euclidean parameter space, does not apply under mixture

Existing Byzantine-tolerant aggregation methods

14

Robust alternative of mean such as:

• Coordinate-wise median (Yin et al., 2018)

• Geometric median (Lai et al., 2016; Steinhardt, 2019)

• Trimmed mean (Yin et al., 2018)

• Median of means (Lugosi and Mendelson, 2019)

• Filtering (Diaklnikolas et al., 2017, 2019; Steinhardt et al., 2017; Zhu et al., 2021, Zhu et al., 2023)

• Krum (Blanchard et al., 2017; Chen et al., 2018; El El Mhamdi et al., 2018)

• No-regret (Zhu et al., 2021; Hopkins et al., 2020, Zhu et al., 2023)

• GAN (Zhu et al., 2022; Gao et al., 2020, Zhu et al., 2023)

• …

Developed for Euclidean parameter space, does not apply under mixture

We consider Byzantine-tolerant
distributed learning of finite
mixture models

Our method at a glance

15

We consider the majority of the machines are failure-free, with |𝔹 | = αm α < 1/2

Our method at a glance

15

Step 1
Use distance based
method to filter
out “bad” estimators

We consider the majority of the machines are failure-free, with |𝔹 | = αm α < 1/2

Our method at a glance

15

Step 1
Use distance based
method to filter
out “bad” estimators

Step 2
Aggregate the remaining
use the reduction
method introduced
earlier in this talk

We consider the majority of the machines are failure-free, with |𝔹 | = αm α < 1/2

Intuition for our method

16

The majority of failure free local estimators are within
distance from in

O(n−1/2)
G* L2

Intuition for our method

16

The majority of failure free local estimators are within
distance from in

O(n−1/2)
G* L2

Parameter space 𝔾K

Intuition for our method

16

The majority of failure free local estimators are within
distance from in

O(n−1/2)
G* L2

G*

Parameter space 𝔾K

Intuition for our method

16

The majority of failure free local estimators are within
distance from in

O(n−1/2)
G* L2

G*

Parameter space 𝔾K

n−1/2

Intuition for our method

16

The majority of failure free local estimators are within
distance from in

O(n−1/2)
G* L2

G*

Parameter space 𝔾K

n−1/2

Intuition for our method

16

The majority of failure free local estimators are within
distance from in

O(n−1/2)
G* L2

• As both , we haveG, G′￼→ G*
nL2(G, G′￼) ≈ n(G − G′￼)⊤H* n(G − G′￼)

G*

Parameter space 𝔾K

n−1/2

Intuition for our method

16

The majority of failure free local estimators are within
distance from in

O(n−1/2)
G* L2

• As both , we haveG, G′￼→ G*
nL2(G, G′￼) ≈ n(G − G′￼)⊤H* n(G − G′￼)

G*

Parameter space 𝔾K

n−1/2

Asymp. generalized χ2

Intuition for our method

16

The majority of failure free local estimators are within
distance from in

O(n−1/2)
G* L2

• As both , we haveG, G′￼→ G*
nL2(G, G′￼) ≈ n(G − G′￼)⊤H* n(G − G′￼)

• For failure-free machine estimates

G*

Parameter space 𝔾K

n−1/2

Asymp. generalized χ2

Intuition for our method

16

The majority of failure free local estimators are within
distance from in

O(n−1/2)
G* L2

• As both , we haveG, G′￼→ G*
nL2(G, G′￼) ≈ n(G − G′￼)⊤H* n(G − G′￼)

• For failure-free machine estimates

G*

Parameter space 𝔾K

n−1/2

Asymp. generalized χ2

L(Ĝ(1), G*) L(Ĝ(1−α)m, G*)L(Ĝ(2), G*)

Intuition for our method

16

The majority of failure free local estimators are within
distance from in

O(n−1/2)
G* L2

• As both , we haveG, G′￼→ G*
nL2(G, G′￼) ≈ n(G − G′￼)⊤H* n(G − G′￼)

• For failure-free machine estimates

G*

Parameter space 𝔾K

n−1/2

Asymp. generalized χ2

L(Ĝ(1), G*) L(Ĝ(1−α)m, G*)L(Ĝ(2), G*) L(Ĝ(1−ϵ)m, G*)

∀ϵ ∈ (0,1/2)

OP(n−1/2)

=

Intuition for our method

16

The majority of failure free local estimators are within
distance from in

O(n−1/2)
G* L2

• As both , we haveG, G′￼→ G*
nL2(G, G′￼) ≈ n(G − G′￼)⊤H* n(G − G′￼)

• For failure-free machine estimates

G*

Parameter space 𝔾K

n−1/2

Asymp. generalized χ2

L(Ĝ(1), G*) L(Ĝ(1−α)m, G*)L(Ĝ(2), G*) L(Ĝ(1−ϵ)m, G*)

∀ϵ ∈ (0,1/2)

OP(n−1/2)

=

Intuition for our method

16

The majority of failure free local estimators are within
distance from in

O(n−1/2)
G* L2

• As both , we haveG, G′￼→ G*
nL2(G, G′￼) ≈ n(G − G′￼)⊤H* n(G − G′￼)

• For failure-free machine estimates

G*

Parameter space 𝔾K

n−1/2

Asymp. generalized χ2

L(Ĝ(1), G*) L(Ĝ(1−α)m, G*)L(Ĝ(2), G*) L(Ĝ(1−ϵ)m, G*)

∀ϵ ∈ (0,1/2)

OP(n−1/2)

=
P(L(Ĝi, G*) ≥ ρnn−1/2) = O(ρ−8

n)
n, ρn → ∞As

Intuition for our method

16

The majority of failure free local estimators are within
distance from in

O(n−1/2)
G* L2

• As both , we haveG, G′￼→ G*
nL2(G, G′￼) ≈ n(G − G′￼)⊤H* n(G − G′￼)

• For failure-free machine estimates

G*

Parameter space 𝔾K

n−1/2

Asymp. generalized χ2

L(Ĝ(1), G*) L(Ĝ(1−α)m, G*)L(Ĝ(2), G*) L(Ĝ(1−ϵ)m, G*)

∀ϵ ∈ (0,1/2)

OP(n−1/2)

=
P(L(Ĝi, G*) ≥ ρnn−1/2) = O(ρ−8

n)
n, ρn → ∞As

A slightly inflated ball of radius
 around a good initial

estimate contain almost all of the
failure-free local estimates

O(ρnn−1/2)

Proposed method: distance filtered mixture reduction

17

Proposed method: distance filtered mixture reduction

17

• We pick Center of attention (COAT) as the initial estimate

Proposed method: distance filtered mixture reduction

17

• We pick Center of attention (COAT) as the initial estimate

2

4
1

3

10
5

7

6

8

9

Byzantine failure Byzantine failure-free

Failure rate: 30%

Parameter space 𝔾K

Proposed method: distance filtered mixture reduction

17

• We pick Center of attention (COAT) as the initial estimate

• The centre of the smallest ball that contains 50% of all
local estimates: ĜCOAT

• We denote the corresponding radius as rCOAT
2

4
1

3

10
5

7

6

8

9

Byzantine failure Byzantine failure-free

Failure rate: 30%

Parameter space 𝔾K

Proposed method: distance filtered mixture reduction

17

• We pick Center of attention (COAT) as the initial estimate

• The centre of the smallest ball that contains 50% of all
local estimates: ĜCOAT

• We denote the corresponding radius as rCOAT
2

4
1

3

10
5

7

6

8

9

Byzantine failure Byzantine failure-free

Failure rate: 30%

Parameter space 𝔾K

Proposed method: distance filtered mixture reduction

17

• We pick Center of attention (COAT) as the initial estimate

• The centre of the smallest ball that contains 50% of all
local estimates: ĜCOAT

• We denote the corresponding radius as rCOAT
2

4
1

3

10
5

7

6

8

9

Byzantine failure Byzantine failure-free

Failure rate: 30%

Parameter space 𝔾K

Proposed method: distance filtered mixture reduction

17

• We pick Center of attention (COAT) as the initial estimate

• The centre of the smallest ball that contains 50% of all
local estimates: ĜCOAT

• We denote the corresponding radius as rCOAT
2

4
1

3

10
5

7

6

8

9

Byzantine failure Byzantine failure-free

Failure rate: 30%

Parameter space 𝔾K

Proposed method: distance filtered mixture reduction

17

• We pick Center of attention (COAT) as the initial estimate

• The centre of the smallest ball that contains 50% of all
local estimates: ĜCOAT

• We denote the corresponding radius as rCOAT
2

4
1

3

10
5

7

6

8

9

Byzantine failure Byzantine failure-free

10

Failure rate: 30%

Parameter space 𝔾K

rCOAT

Proposed method: distance filtered mixture reduction

17

• We pick Center of attention (COAT) as the initial estimate

• The centre of the smallest ball that contains 50% of all
local estimates: ĜCOAT

• We denote the corresponding radius as rCOAT

• Select 𝕊ρ = {i : L(ĜCOAT, G̃ i) ≤ ρrCOAT}

2

4
1

3

10
5

7

6

8

9

Byzantine failure Byzantine failure-free

10

Failure rate: 30%

Parameter space 𝔾K

rCOAT

ρrCOAT

Proposed method: distance filtered mixture reduction

17

• We pick Center of attention (COAT) as the initial estimate

• The centre of the smallest ball that contains 50% of all
local estimates: ĜCOAT

• We denote the corresponding radius as rCOAT

• Select 𝕊ρ = {i : L(ĜCOAT, G̃ i) ≤ ρrCOAT}

• Aggregation all local estimates in 𝕊ρ

• : 50% of local estimates are aggregatedρ = 1

• : more than 50% local estimates are aggregatedρ > 1

2

4
1

3

10
5

7

6

8

9

Byzantine failure Byzantine failure-free

10

Failure rate: 30%

Parameter space 𝔾K

rCOAT

ρrCOAT

Statistical guarantees

18

Statistical guarantees

● We establish the theoretical results under some regularity conditions

18

Statistical guarantees

● We establish the theoretical results under some regularity conditions

● Properties of the initial estimate

○ (mixture density)

○ When strongly identifiable: (mixing distribution as vector)

L(ĜCOAT, G*) = OP(n−1/2)

∥ĜCOAT − G*∥ = OP(n−1/2)

18

Statistical guarantees

● We establish the theoretical results under some regularity conditions

● Properties of the initial estimate

○ (mixture density)

○ When strongly identifiable: (mixing distribution as vector)

L(ĜCOAT, G*) = OP(n−1/2)

∥ĜCOAT − G*∥ = OP(n−1/2)
● Properties of DFMR()

○ When for any , , and strongly identifiable,

 where the proportion of failure estimates

within distance from

○ If as , we have

ρ
ρ = Ω(m1/14+δ) δ > 0 n ≥ m

∥ĜDFMR − G*∥ = OP(N−1/2 + α̃mρn−1/2) α̃m

2ρn−1/2 G*
P(L(ξi, G*) ≤ r) = O(r3) r → 0 ĜDFMR = Ĝoracle + oP(N−1/2)

18

19

Real data: NIST clustering

19

Real data: NIST clustering
• Extract image features from pre-trained CNN in , d = 50 m = 50

19

Real data: NIST clustering
• Extract image features from pre-trained CNN in , d = 50 m = 50

Server

19

Real data: NIST clustering
• Extract image features from pre-trained CNN in , d = 50 m = 50

• Byzantine failures: replace digits features with letter features on failure machines

• Each machine fit a Gaussian mixtureK = 10

Server

19

Real data: NIST clustering
• Extract image features from pre-trained CNN in , d = 50 m = 50

• Byzantine failures: replace digits features with letter features on failure machines

• Each machine fit a Gaussian mixtureK = 10

Server

19

Real data: NIST clustering
• Extract image features from pre-trained CNN in , d = 50 m = 50

• Byzantine failures: replace digits features with letter features on failure machines

• Each machine fit a Gaussian mixtureK = 10

Server

19

Real data: NIST clustering
• Extract image features from pre-trained CNN in , d = 50 m = 50

• Byzantine failures: replace digits features with letter features on failure machines

• Each machine fit a Gaussian mixtureK = 10

• Clustering performance: (the higher the better)

Server

19

Real data: NIST clustering
• Extract image features from pre-trained CNN in , d = 50 m = 50

• Byzantine failures: replace digits features with letter features on failure machines

• Each machine fit a Gaussian mixtureK = 10

• Clustering performance: (the higher the better)

Server

19

Real data: NIST clustering
• Extract image features from pre-trained CNN in , d = 50 m = 50

• Byzantine failures: replace digits features with letter features on failure machines

• Each machine fit a Gaussian mixtureK = 10

• Clustering performance: (the higher the better)

Server

Barrio et al. (2019) Single machine Aggregate all

19

Real data: NIST clustering
• Extract image features from pre-trained CNN in , d = 50 m = 50

• Byzantine failures: replace digits features with letter features on failure machines

• Each machine fit a Gaussian mixtureK = 10

• Clustering performance: (the higher the better)

Server

Barrio et al. (2019) Single machine Aggregate allOur method

19

Real data: NIST clustering
• Extract image features from pre-trained CNN in , d = 50 m = 50

• Byzantine failures: replace digits features with letter features on failure machines

• Each machine fit a Gaussian mixtureK = 10

• Clustering performance: (the higher the better)

• DFMR(1): select 50% local estimates for aggregation; DFMR() selects > 50%ρ

Server

Barrio et al. (2019) Single machine Aggregate allOur method

19

Real data: NIST clustering
• Extract image features from pre-trained CNN in , d = 50 m = 50

• Byzantine failures: replace digits features with letter features on failure machines

• Each machine fit a Gaussian mixtureK = 10

• Clustering performance: (the higher the better)

• DFMR(1): select 50% local estimates for aggregation; DFMR() selects > 50%ρ

• DFMR() with is as good as the Oracle; DFMR(1) is comparableρ ρ ∈ [1.35,3]

Server

Barrio et al. (2019) Single machine Aggregate allOur method

Summary

• Distributed learning of finite mixture is difficult due to the
well-known “label switching problem”

• The above issue makes existing aggregation approaches
and their Byzantine-tolerant inapplicable

• We design the first Byzantine-tolerant aggregation method
for distributed learning of finite mixture models

• We demonstrate that DFMR is both computationally efficient
and statistically sound.

20

Paper link

Summary

• Distributed learning of finite mixture is difficult due to the
well-known “label switching problem”

• The above issue makes existing aggregation approaches
and their Byzantine-tolerant inapplicable

• We design the first Byzantine-tolerant aggregation method
for distributed learning of finite mixture models

• We demonstrate that DFMR is both computationally efficient
and statistically sound.

20

Paper link

